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Abstract
Can public R&D investment in developing countries drive productivity growth? We
study this question in the context of Brazilian agriculture and the Empresa Brasileira
de Pesquisa Agropecuária (Embrapa), a public research corporation established in
1973 to develop locally suitable science and technology. First, we show that Embrapa
redirected research toward prioritized staple crops and local ecological conditions,
and increased research productivity, especially in remote and research-scarce regions.
Second, exploiting the staggered rollout of research centers alongside heterogeneous
local exposure to Embrapa’s technology development, we find that Embrapa signifi-
cantly increased agricultural output, driven both byhigher productivity and expanded
input use. Combined with a model, these estimates imply that public R&D invest-
ment increased national agricultural productivity by 110% with a benefit-cost ratio
of 17. The decentralized structure, in which research labs were spread across many
ecological zones instead of in a single hub, explains a large share of these benefits.
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1 Introduction

Can public R&D investment in developing countries drive productivity growth? The con-
ventional perspective in economics is that innovation takes place exclusively in a small set
of frontier nations where the returns to R&D are large (Jones and Summers, 2020), and
countries outside of this set grow by adopting foreign technology (Acemoglu et al., 2006).
Underlying this view is a presumption that non-frontier countries have a low return on
R&D investment due to a lack of human or physical capital, but nonetheless a high return
to technology upgrading. By implication, policymakers outside the frontier should prior-
itize technology adoption over homegrown R&D (Parente and Prescott, 1994; Barro and
Sala-i-Martin, 1997). This perspective is echoed in numerous microeconomic studies and
development programs that aim to identify, and then overcome, the barriers to adopting
foreign technology (Suri and Udry, 2022; Verhoogen, 2023).

Opportunities for growth without innovation, however, may be more limited in prac-
tice. There is mounting evidence that foreign technology adoption does not always raise
productivity, especially if frontier innovation is mismatched with the local context (Basu
and Weil, 1998; Acemoglu and Zilibotti, 2001). It is well understood that advanced tech-
nology in agriculture and medicine, for example, is tailored toward the environments of
high-income countries and therefore less effective elsewhere (Kremer and Glennerster,
2004; Hotez, 2021; Moscona and Sastry, 2025). From this perspective, R&D investment in
locally appropriate technologymay be an important policy tool to spur growth in low and
middle-income countries. Yet, there is little empirical evidence regarding the efficacy or
cost-effectiveness of public R&D investment outside of frontier nations.

In this paper, we study one of the most prominent examples of public R&D investment
in a developing country: the Brazilian Agricultural Research Corporation (Embrapa), es-
tablished in 1973 to “promote, stimulate, coordinate and carry out research activities, with
the objective of producing knowledge and technology for the agricultural development of
the Country” (Brasil, 1972). Original scientific research was Embrapa’s explicit goal from
the outset. In the words of one of its founders, Eliseu Alves:

[T]he major problem in Brazilian agriculture was not a lack of potential. The
potential existed, but there was no science capable of generating technology
suited to what we needed. To address this, we needed an institution capable
of focusing high-level science on solving the concrete problems of Brazilian
agriculture (Alves and Duarte, 2018, pp. 83-84).

Embrapa opened research centers throughout the country, including in areas with limited
pre-existing R&D or agricultural production, and trained agricultural scientists to popu-
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late these regional hubs (Correa and Schmidt, 2014). Researchers at these centers devel-
oped soil modification tools adapted to the acidic and nutrient-poor soils of central Brazil,
identified genetic traits that conferred resistance against Brazil’s specific pest threats to
crop production, and released hundreds of new crop varieties, including the first that
allowed for the production of soy in tropical latitudes, among other advances (see Mon-
teiro et al., 2012; Correa and Schmidt, 2014, and also Section 2). During the subsequent
decades, Brazil transitioned from being a major food aid recipient to one of the world’s
largest agricultural exporters, a transformation that is particularly striking in light of the
vast and persistent disparities in agricultural productivity across countries (Caselli, 2005).
Qualitative accounts attribute much of this change to public R&D (Klein and Luna, 2018).

Our main contribution is to quantify the overall effect of public R&D investment on
agricultural innovation and productivity growth in Brazil. To do this, we obtain informa-
tion on the size and geographic expansion of Embrapa, construct a novel dataset of the
research trajectories of all of Brazilian agricultural scientists, and draw on nine rounds of
Brazil’s Agricultural Census. Using our researcher-level data, we document that Embrapa
re-directed research toward local ecological conditions and staple crops and overcame the
obstacles to research productivity in places with limited pre-existing R&D capacity. Ex-
ploiting the staggered establishment of Embrapa’s research centers, we find that R&D in-
vestments had large positive effects on agricultural productivity. Combinedwith amodel,
these estimates imply that Embrapa raised Brazilian agricultural productivity by 110%
with a benefit-cost ratio of 17. This effect is largely driven by the spread of research cen-
ters across the country, which unlocked the development of appropriate technology for
Brazil’s diverse ecological zones. Our findings support the idea that targeted public R&D
investments can allow countries to escape the “technology mismatch trap.”

Measurement. To study how Embrapa affected the trajectory of scientific research and
agricultural productivity, we assemble data from four types of sources. First, we construct
a detailed history of Embrapa’s expansion, including the location, founding year, and an-
nual budget of each research center, as well as the name and position of all scientists.

Second, we construct a detailed record of agricultural science in Brazil from the near-
universe of resumes of agricultural scientists in Brazil. Specifically, we compile data from
Brazil’s Lattes platform, a government-run database in which all researchers are required
to have an up-to-date CV in order to apply for any form of public funding. From these
data, we measure individual scientists’ employment history and research output. Using
keyword searches of all publication titles, we categorize research output by topics. Our
final dataset covers over 35,000 researchers and more than 1.3 million research articles.

Third, to measure agricultural productivity we compile all rounds of the Agricultural
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Census of Brazil from 1960 to present. The Census reports municipality-level information
every five or ten years on revenues, yields, land use, land values, and input expenditure.
We supplement the Census with additional data on crop-specific yields from the Munici-
pal Agricultural Production (PAM) survey from 1974 the present.

Fourth, we compile municipality-level data on a broad range of geographic and eco-
logical characteristics. These include the biome in which the municipality is located, the
presence of specific crop pests and pathogens, and various measures of climate, topogra-
phy, and soil characteristics. We use this to study the extent to which agricultural research
focuses on characteristics of the immediate environment and to develop measures of eco-
logical similarity between municipalities to proxy for agricultural technology mismatch.

Results: Agricultural Research. In the first part of our analysis, we studywhether—and
if so, how—Embrapa affected the trajectory of agricultural research in Brazil.

First, we study how Embrapa affected the focus of agricultural research across topics.
Compared to other research in Brazil (e.g., at universities or private companies), articles
written byEmbrapa researchers are considerablymore likely tomention a Brazilian biome,
a major Brazilian pest or pathogen, or one of the staple crops singled out in Embrapa’s
founding to address the nation’s food insecurity. The effects for ecological conditions are
attenuated when we include location fixed effects to control for geographic differences in
the composition of research. Consistent with the geography of research determining its
ecological focus, we show that researchers are much more likely to study local ecological
conditions. Our findings are consistent with historical accounts of Embrapa’s aim to study
all ecologies of Brazil by bringing research infrastructure to those locations (Alves, 1988).

Second, we studywhether Embrapa’s differential focus had any effect on the aggregate
direction of innovation—that is, did Embrapa increase total research on specific ecological
conditions and crops, or simply reallocate research to the public sector? Exploiting the
opening of Embrapa research centers that have an explicit crop or biome focus, wefind that
these topic-specific center openings increase aggregate research activity on those topics,
with no evidence of anticipation effects. This includes research by scientists who are not
employed by Embrapa. Thus, Embrapa did not “crowd out” other research on its focus
topics—if anything, there was “crowd in.”

Third, we investigate the effect of Embrapa on researcher productivity. To cover Brazil’s
heterogeneous ecology, Embrapa established centers in potentially research-unproductive
areas with low pre-existing human capital, research capacity, and researcher agglomera-
tion. We can separately identify the effects of employer and place on research productiv-
ity using our unique researcher-level panel data, in which individuals move across both
employers and locations. We find that employment at Embrapa substantially increases

3



researcher productivity. Moreover, the effect of Embrapa is larger in more remote regions
of the country and, quantitatively, more than compensates for the negative direct effect
of working in these regions. These results suggest that Embrapa was able to overcome
constraints to research in less developed parts of Brazil. The results are all similar if we
restrict attention to articles published in high-impact, internationally-recognized journals.

Results: Agricultural Productivity. We next evaluate Embrapa’s effect on agricultural
productivity. Our approach is to use regional panel data and heterogeneous exposure to
Embrapa across space and time for causal identification.

Wemeasure local exposure to Embrapa by combining two pieces of variation. The first
piece is cross-sectional: motivated by our results documenting the local ecological focus of
agricultural research, we measure the potential suitability of research developed in each
Embrapa center for all othermunicipalities using an environmental similarity index based
on several characteristics of climate, topography, and soil conditions (as in Moscona and
Sastry, 2025; Bazzi et al., 2016). The second piece is time-varying: wemeasure the staggered
expansion of Embrapa across places. Combining these sources of variation, we construct
Embrapa Exposure for each municipality and year as the maximum ecological similarity
among centers that have been founded as of that year. This measures how Embrapa’s
research became more suited to different locations as the corporation expanded.

In our main empirical design, we study the effect of Embrapa Exposure on various
local agricultural outcomes, as measured in the Census of Agriculture (1960-2017). We
control for place and time fixed effects, absorbing fixed cross-sectional differences (e.g.,
direct effects of geography) as well as aggregate trends that may spuriously coincide with
Embrapa’s expansion. The central identification assumption is that the founding of new
Embrapa centers was orthogonal to agricultural production trends in ecologically similar
(compared to ecologically distant) Brazilian municipalities.

Our main finding is that exposure to Embrapa increases agricultural productivity. We
show that this is not driven by physical distance to Embrapa centers by both controlling
directly for physical distance to research centers and by dropping municipalities that are
sufficiently close to the centers. Our findings are similar using several strategies to mea-
sure productivity, including the flow of production value per acre, the stock of land value
per acre, or a broader measure of total factor productivity that also takes into account la-
bor and intermediate inputs. Turning to dynamics, we find no evidence of anticipation
(i.e., no pre-trends). Moreover, the effects accumulate over time: the long-run effect on
local productivity is 30-40% larger than the within-decade effect. Finally, to support a
causal interpretation of our findings, we conduct a falsification test in which we construct
“placebo treatments” based on plausible alternative expansions of Embrapa across both
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time and space. Our estimates are in the right tail of the placebo estimates (p < 0.01).
We next investigate the mechanisms underlying these effects on productivity. First, we

study the role of input intensification and land conversion. Embrapa exposure leads to
higher expenditure on intermediate inputs like seeds, fertilizers, and chemical defenses,
which were the main focus of Embrapa’s technology development. Cropland also ex-
pands, but at a slower rate than production, while land devoted to pasture declines, con-
sistent with reallocation driven by improved relative productivity of crops. Second, we
isolate the effect of Embrapa on the staple crops that were the focus of its research efforts
by exploiting variation in productivity trends across crops and within municipalities. We
find that exposure to Embrapa has a large positive effect on the crops taht were the focus
of its innovation, and little to no effect on other crops. These findings are consistent with
directed innovation as the driving mechanism for our main findings.

The Returns to R&D. We finally combine our empirical strategy with a model to quan-
tify the aggregate productivity consequences of Embrapa and the cost-effectiveness of its
investments. The model captures not just technology mismatch between ecologically dis-
tinct places, the main focus of our reduced-form empirical analysis, but also scale effects
and imperfect substitutability between research output from different centers. We esti-
mate themodel via a nonlinear least squares strategy that builds on and nests our reduced-
form specification. Using themodel, we compare observed agricultural productivity with
a counterfactual in which Embrapa’s research is held at its inception level.

We find that Embrapa increased aggregate agricultural productivity by 110%. This is
39 percent of the total agricultural productivity growth in Brazil between 1970 and the
present as estimated by Fuglie (2015). Combining these estimates with the total expendi-
ture of Embrapa, we calculate that the benefit-cost ratio of Embrapa’s R&D was 17. Thus,
while the cost of Embrapawas considerable—about 1%of Brazil’s total agriculturalGDPat
its peak, comparable to the scale of investment in the US (Correa and Schmidt, 2014)—our
analysis suggests that the benefits were considerably larger.

We close our analysis by studying howEmbrapa’s geographic scope shapes our benefit-
cost analysis. To this end,we construct a series of counterfactuals, inwhich Embrapapours
its entire budget into a single large center in different locations of Brazil. Operating just
in Brasília, where its largest headquarters is located, achieves less than two-thirds of the
productivity gain of the full program. Moreover, the benefit-cost ratio is similarly lower,
implying that expenditures in a single location are less effective than investments spread
across many ecologically distinct locations. Yet, operating solely in Brasília is 50 percent
better than the average return across different potential centers—indicating that the deci-
sion to place the headquarters there is consistent with maximization of the benefits.
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Related Literature. This paper relates to several strands of existing literature. The first is
a body ofwork studying the consequences of public R&D. Existingwork focuses primarily
on high-income countries (e.g., Howell, 2017; Azoulay et al., 2019; Kantor and Whalley,
2023; Gross and Sampat, 2023, 2025;Moretti et al., 2025). Most related, Kantor andWhalley
(2019) study the historical effects of agricultural experiment stations in the US and how
their effects decline with distance. Our contribution here is twofold. First, we investigate
the effect of public R&D in a developing country, where both costs and benefits could be
very different, and directly estimate how new technology affects productivity. Second,
we show how public R&D can spur the development of locally appropriate technology,
the absence of which has been shown to reduce productivity in low and middle income
countries (Stewart, 1978; Lerner et al., 2024; Moscona and Sastry, 2025).

A small body of work estimates the returns to R&D in rich countries, generally fol-
lowing one of two strategies: linking R&D investments to productivity in the aggregate
time series (Jones and Summers, 2020; Fieldhouse and Mertens, 2023) or separately esti-
mating the value of the individual technologies that result from public R&D investments
(Griliches, 1958; Azoulay et al., 2019). We develop a new approach that leverages hetero-
geneous exposure to research investment in panel data to causally identify the effect of
R&D on productivity directly. This circumvents some of the identification challenges as-
sociated with time-series approaches without requiring the researcher to take a stand on
the social value of individual technologies, a challenging object to estimate that can often
vary substantially from private valuations (Griliches, 1979; Nordhaus, 2004).

Second, we contribute to the literature on the geography of innovation. Internation-
ally, existing work on “inappropriate technology” has documented that the concentration
of innovation in a few places can limit its benefits for the rest of the world (Basu and Weil,
1998; Acemoglu and Zilibotti, 2001). We show that public R&D can spur the development
of locally-appropriate technology and raise productivity. Within the US, existing work
has found evidence of external returns to scale (agglomeration externalities) in innovation
and drawn implications for place-based policies that target “high tech clusters” (Moretti,
2021; Gruber and Johnson, 2019). In contrast to these studies, we explicitly model the geo-
graphic specificity of innovation and show that the scope of new technology investments
contribute substantially to their productivity effects. In this context, spreading research
activity out—and not concentrating it in a few clusters—has the highest return.

Third, we contribute to the literature on determinants of global productivity gaps in
agriculture (e.g., Gollin et al., 2014; Adamopoulos and Restuccia, 2022), especially those
investigating drivers of agricultural productivity growth in Brazil (Bustos et al., 2016; Pel-
legrina, 2022; Pellegrina and Sotelo, 2024). A dominant strand of this literature has empha-
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sized frictions inhibiting technology adoption (e.g., Conley and Udry, 2010; Duflo et al.,
2011; Suri and Udry, 2022). Our results, on the other hand, emphasize the important role
of technology development. This is consistent with work emphasizing the role of philan-
thropic investments in tropical agricultural R&D during the Green Revolution (e.g., Even-
son, 2001; Evenson and Gollin, 2003; Pingali, 2012; Moscona, 2019; Gollin et al., 2021) and,
more generally, how ecological mismatch with centers of agricultural R&D can help ex-
plain global disparities in agricultural productivity (Moscona and Sastry, 2025). We show
that public R&D investment in Brazil helped escape this “technology mismatch trap.”

Fourth, we relate to an existing body of work studying Embrapa itself. Many of these
studies are qualitative in nature and, to assess impact, focus on case studies of Embrapa’s
research and technology development (e.g., Gasques et al., 2012; Correa and Schmidt,
2014; Klein and Luna, 2018). Others have quantified the economic effects of specific crop
varieties developed by Embrapa (e.g., Pardey et al., 2006; Gasques et al., 2009). We com-
pile new data and develop new empirical strategies to systematically measure the effects
of Embrapa on agricultural innovation and productivity growth in Brazil.

Outline. This paper is organized as follows. Section 2 provides background information
about Embrapa and Brazilian agriculture. Section 3 describes our data and measurement
strategies used in our empirical analysis. Section 4 presents our results on the impact of
Embrapa on the rate and focus of agricultural innovation, and Section 5 presents our re-
sults on the impact of Embrapa on agricultural productivity growth. Section 7 concludes.

2 Background: Brazilian Agriculture and Embrapa

This section reviews the history of Brazilian agriculture, from the country’s dependence
on foreign food aid as recently as the 1960s to its ascendance as the world’s third largest
agricultural exporter. In this context, we introduce the institutional background of Em-
brapa and discuss its founding, development, and role in agricultural R&D.

2.1 Brazilian Agriculture Before the 1970s

In the mid 20th century, Brazil’s agricultural productivity was relatively stagnant and low
by global standards. Figure 1 plots yields over time for six major crops. Yields for major
staples (maize, wheat, and rice) are close to flat between 1950 and 1970. Even historically
important cash crops like sugarcane, which fueled Brazil’s colonial economy, were under
half as productive as the corresponding sectors in theUnited States (Klein and Luna, 2023).
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During the late 1960s, pressures on Brazil’s food-production sector intensified due to
rapid urbanization and population growth. The country, already a net importer of food,
became increasingly reliant on foreign donations and food aid (Vieira Filho and Fishlow,
2017; Martha Jr et al., 2012). There was a growing realization among policy makers that
expanding domestic food production could be essential for staving off food insecurity and
political pressure from urban constituents facing high food prices.

A key roadblock, according to agronomists, was the absence of available technology
that was productive on Brazilian land (Alves and Duarte, 2018). While the Green Revo-
lution had more immediate effects on developing countries that hosted major breeding
centers (e.g., Mexico and the Philippines), it did not directly benefit Brazil. A potential
explanation was that Brazil had a very different geography, ecology, and farming practice.
For example, new crop varieties were ill-suited to Brazil’s acidic soils (Vilaça de Vascon-
celos et al., 2022). Moreover, many were intended for use alongside substantial irrigation,
but Brazilian agriculture was largely rain-fed (Cabral et al., 2022).

Brazil’s ownagricultural researchwas limited and concentrated onwealthier states and
export-oriented cash crops (Embrapa, 2006; de Barros and de Barros, 2005). For example,
by 1960 more than half of the non-fruit varieties developed by the Agronomic Institute of
Campinas, one of Brazil’s main research centers, were for coffee, sugarcane, and cotton.
Much of the remaining investment was devoted to importing and testing foreign technol-
ogy, based on the presumption that technology adoption could close the productivity gap
with the rest of the world (Martha Jr et al., 2012).

2.2 Embrapa: Origins and Design

Against this backdrop—and a 1973 price shock that put Brazil’s dependence on food im-
ports into starker relief—Brazil’s central administration embarked on large-scale invest-
ments tomodernize Brazilian agriculture. The centerpiece of this project was the Empresa
Brasileira de Pesquisa Agropecuária (Embrapa), a public corporation devoted to agricul-
tural research and development.

The working group tasked with designing Embrapa, consisting mainly of economists
and agricultural scientists, identified two main challenges blocking Brazilian agricultural
productivity growth. The first was the geographic centralization of the research structure,
which limited agricultural science to a small fraction of the country. The second was the
lack of trained and specialized personnel and of attractive career paths in agricultural
research (Cabral, 2005, 38-50). The final report of this group, widely known as “The Black
Book” (Livro Preto), served as the guiding document in Embrapa’s formation in 1973.
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Figure 1: Brazilian Crop Yields Over Time
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Notes: This graph shows the evolution of physical yields (tons of output per hectare) for six crops in Brazil,
using data from the Brazilian Census of Agriculture from 1950 to 2017. Each dot indicates a separate obser-
vation. In each panel, we normalize the yield in 1970 to 1. Data for soybeans are not available before 1970.

Three key organizational principles for Embrapa emerged from this plan: the organi-
zation’s scale, geographic scope, and structure as a public corporation.

Scale. The investment in Embrapa was large relative both to past efforts in Brazil and
contemporary efforts elsewhere in the world. By the 2000s, Embrapa’s spending on agri-
cultural R&D as a share of agricultural GDP was comparable to that of all public agricul-
tural R&D in many high-income countries, including the US (Correa and Schmidt, 2014),
and roughly triple that of public agricultural R&D in India and China (OECD, 2022). In
2010, Embrapa’s budget reached 1.9 billion reais in current values, or about 1.15 billion
dollars, roughly thirteen times the value of Brazilian public agricultural R&D at the time
of its founding. For comparison, the US Department of Agriculture (USDA) R&D budget
in 2010 was 2.3 billion dollars (Sargent et al., 2009).

Embrapa was a similarly large program measured by its employment, especially of
agricultural researchers. By 2010, Embrapa’s employed about 2,300 agricultural scientists
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in Brazil, or 40% of the total number estimated to be in the country by the Agricultural Sci-
ence and Technology Indicator (ASTI). This number is again comparable to the US, where
the Agricultural Research Service (ARS), the USDA’s research arm, employs roughly two-
thousand scientists and post-doctoral researchers (USDA ARS, 2024).

Geographic Scope and Specialization. Embrapa’s central goal was to study all regions
and ecosystems of Brazil (Alves, 1988). This was a response to the founders’ diagnoses for
the earlier stagnation of Brazil’s agriculture and agricultural research: over-concentration
in a few areas, an excessive focus on existing cash crops (which were grown in the same
areas), and a lack of science and technology suited to Brazil’s diverse geographic features.
At the time of Embrapa’s founding, the priority regions for expanding research and agri-
cultural production were the Northeast, the Cerrado, and the Amazon (Embrapa, 2006).

Embrapa’s efforts in the Cerrado typify the organization’s approach to incorporating
new geographies in agricultural research. The Cerrado is a two-million square kilometer
tropical savanna (see also Section 3 and Figure 2). A defining feature that made farm-
ing with existing technology unproductive is the Cerrado’s highly acidic soils. In the
words of Embrapa’s founder, agricultural expansion into the Cerrado required “a better
understanding of the climate, soils, water availability, flora, land, and, ultimately, an entire
ecosystem” that had been neglected by existing science (Cabral, 2005). Embrapa Cerrado
was established in 1975 as one of the organization’s first centers.1

Structure. Embrapawas structured as a national public company operating under an au-
tonomous legal framework. In principle, this structure enabled flexible interactions with
the private sector, public universities, and other organizations (Cabral, 2005; Embrapa,
2006; Martha Jr et al., 2012).

Relatedly, as wewill further describe below, much of Embrapa’s efforts centered on de-
veloping technologies that could be widely marketed to farmers. Embrapa explicitly en-
couraged a “problem-based” approach among its researchers and discouraged “curiosity-
driven” research, insofar as the latter distracted from the goal of developing Brazilian agri-
culture at scale (Correa and Schmidt, 2014; Embrapa, 2006). As one important example of
these efforts, Embrapa directly participated in the commercialization of seed varieties, ei-
ther by itself or in cooperation with external partners (Correa and Schmidt, 2014). It also
conducts extensive interviews with farmers from all regions of Brazil in order to tailor its
research investments to their specific constraints and production threats (Cruz, 2025).

1A similar impulse motivated the 1975 establishment of Embrapa Rondônia in the heart of the Amazon,
more than a thousand kilometers from any pre-existing agricultural research station. This unit’s task was
to develop new biotechnology to improve agriculture in the Amazon region (Embrapa, 2025b).
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2.3 Embrapa’s R&D and the Growth of Brazilian Agriculture

Embrapa is the main developer of agricultural technology in Brazil. Its researchers have
developed more than 350 crop varieties and 200 international patents to their credit (Cor-
rea and Schmidt, 2014). Case-study evidence suggests that Embrapa technology was cen-
tral to several developments in Brazilian agriculture over the last 50 years. Below, we
briefly highlight some of the most salient developments.

Expansion into the Cerrado. An early priority of Embrapa was to establish a presence
in the Cerrado. As of the 1970s, the Cerrado was a region of “low-productivity activity,
such as extensive cattle ranching” (Correa and Schmidt, 2014, p. 3). The constraints to
agricultural production in the Cerrado are myriad, including high temperatures, lengthy
dry spells, very low soil pH, significant nitrogen deficiency, and high saturation in toxic
aluminum (Scheid Lopes et al., 2012). NormanBorlaug, the father of theGreenRevolution,
averred that “nobody thought these soils were ever going to be productive” in the global
research community during the 1960s and 1970s (Rohter, 2007).

Nonetheless, regions within the Cerrado have become central to Brazil’s modern agri-
cultural economy, developing into a highly diversified agricultural hub. According to the
2006 agricultural census, the Cerrado accounted for 20 percent of national maize produc-
tion, 42 percent of soy, 7 percent of vegetables, 65 percent of cotton, and 10 percent of
sugarcane. In contrast, during the 1970s the region accounted for no more than 5 percent
of national production of any of these crops.

Prior studies suggest that Embrapa and its research into soil chemistry were central to
widespread use of agricultural liming, which allowed farmers to neutralize the Cerrado’s
acidic soils (Vieira Filho and Fishlow, 2017; Correa and Schmidt, 2014). Embrapa scien-
tists were also active in researching techniques for nitrogen fixation that could overcome
the soil’s nutrient deficiency. Two Embrapa researchers have, in subsequent decades, re-
ceived the World Food Prize for research related to each of these strands: Edson Lobato,
for studying the soil chemistry of the Cerrado, and Mariangela Hungria, for developing
techniques for bacterial nitrogen fixation. Borlaug himself, in an interview, summarized
thusly: in the Cerrado, “Embrapa was able to put all the pieces together” (Rohter, 2007).

The Growth of Soy. An important engine of Brazil’s agricultural growth has been the
enormous expansion of cultivation of soybeans, a crop for which Brazil today ranks as the
world’s second largest producer and exporter. Soybeans are, by nature, a temperate crop,
originating from the northeast of China. The expansion of soybeans into Brazil’s tropical
latitudes necessitated new technology on at least two fronts: techniques to tame the soil of
the tropical savanna, described above, and soybean varieties that were adapted to tropical
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latitudes.2 In 1975, Embrapa Soja was established in the state of Paraná with the goal of
“tropicalizing” the soybean. In 1980, Embrapa created a first soybean variety adopted
to tropical latitudes and, in subsequent decades developed about 200 total soy varieties.
Monteiro et al. (2012) argue that Embrapa’s investments were critical to the “first phase”
of expansion of the Brazilian soy industry.

The 1970s and 1980s saw Brazil become theworld’s second largest soy producer, with a
more than five-fold increase in global market share relative to 1970 (Monteiro et al., 2012).
This phase predates subsequent developments, including the introduction of genetically
modified soy and entry of multinational processing companies, which began during the
mid-1990s (see Bustos et al., 2016). Both of these phases are visible in Figure 1, which
shows soybean yields increasing dramatically in each decade starting from 1970.

The Broader Scope. There aremany additional examples of successful new technologies
developed by Embrapa. This includes the high-yielding rice varieties that have led to
yield increases of nearly one percent per year (Magalhães Jr. and Stone, 2018); cotton
varieties adapted toMatoGrosso, thousands of kilometers away from the previous centers
of cotton production in São Paulo and Paraíba (Klein and Luna, 2023); and, more recently,
transgenic crop traits, culminating in the release of a genetically-modified maize variety
that is resistant to local pests and pathogens, including the fall armyworm, one of themost
damaging pests in Brazil (Embrapa and Helix, 2022).

Thus, the historical record establishes Embrapa’s size, scope, and footprint on several
classes of agricultural technology. Our goal is to move beyond a handful of case studies
and investigate whether government investment in R&D had a systematic and causal ef-
fect on innovation and productivity growth in Brazil. Did Embrapa “lead” technological
progress and productivity growth, or merely follow pre-existing trends? Did new tech-
nology development translate into meaningful changes in agricultural productivity? And
if so, were the productivity benefits sufficient to justify the scale of research investment?
Answering these questions requires turning to data, whichwe describe in the next section.

3 Data and Measurement

Our empirical analysis combines information on the organization and geographic expan-
sion of Embrapa with detailed data on Brazilian agricultural research, production, and
ecology. We summarize these data sources below, relegating details to Appendix A.

2See Pellegrina (2022) for more details about the expansion of soybeans to tropical regions.
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Figure 2: Embrapa’s Research Centers

Notes: Locations of Embrapa research centers by year of creation, overlaid with Brazil’s major biomes and
state boundaries. Data sourced from Embrapa and IBGE.

Embrapa’s Organization and Budget. We compile comprehensive information about
Embrapa’s organizational structure through a government transparency request (Embrapa,
2022a). First, we collect information on the founding year and address of each unit. Fig-
ure 2 shows the distribution of Embrapa research centers across Brazil, categorized by
founding year. While Embrapa was founded in 1973, it continued to expand over the sub-
sequent decades, opening new centers well into the 2000s. The centers are spread across
all of Brazil’s major ecological zones and regions.

Second, we obtain detailed data on Embrapa’s budget through a second transparency
request (Embrapa, 2022b). For every center and year since 1974, we compile informa-
tion on all personnel, operational, and capital expenses. Comprehensive data on the costs
of R&D programs are rare—especially over extended periods of time and for large-scale
investments—which is a key barrier to generating credible estimates of the returns to R&D
investment (Jones and Summers, 2020). Thus, these cost data provide a unique opportu-
nity to perform a benefit-cost analysis (see Section 6).

Agricultural Research. To measure agricultural research across topics, institutions, and
time, we construct a novel database of the career trajectories and research output of agri-
cultural researchers in Brazil. This allows us to study how the growth of Embrapa—as
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well as employment by one of its centers—shifted the rate and direction of research.
The key source of information used to construct this database is Brazil’s Lattes plat-

form, an integrated information system managed by the Brazilian government that stores
researchers’ CVs, including their publication, employment, and educational histories. Each
researcher is responsible for updating their own information and an up-to-date Lattes pro-
file is required for all government funding, support, and collaboration or recognition. As
a result, there are strong incentives for all researchers to maintain a complete and current
profile. Moreover, the Lattes platform is publicly available, maintained by the National
Council for Scientific And Technological Development of Brazil (CNPq), making it possi-
ble to freely access the detailed history of all researchers in the database.

We collect the full Lattes profiles of all individuals with any listed expertise in the
agricultural sciences.3 This includes each individual’s educational history (i.e., degrees,
graduation years, institutions, and dissertation titles); full employment history (i.e., insti-
tutions, employment years, and position titles); and full publication history (i.e., publica-
tions, journals, publication years, and titles).4 We validate the coverage of this database by
comparing it with the official list of all Embrapa-affiliated researchers, and find that that
94% of all Embrapa researchers appear in our Lattes-derived data. Our final database con-
tains 35,602 unique researchers—6,259 of whom were employed by at least one Embrapa
research center during their career—and approximately 1.3 million research articles.

To study how Embrapa affected the location and direction of research, we geo-located
all employers and institutions by municipality using ChatGPT (GPT-4o). In addition, we
used keyword searches in the title of each article to determine its topic (see Appendix A.2).
We identify all articles related to Brazil’s major biomes, crop-affecting pests, and crops.

Agricultural Production. Our main source of data on agricultural production is the
Agricultural Census of Brazil. While the Census has been conducted since 1920, digi-
tal versions are available only for the 1995-6, 2006, and 2017 rounds. We therefore digitize
all rounds since 1960 from scanned pdf files published online by the Brazilian Institute of
Geography and Statistics (IBGE). Using these data, we construct amunicipality panel data
with information on agricultural output, land use (i.e., devoted to crops versus pasture),
land values, technological input use (e.g., use of tractors, chemicals, fertilizers), labor input
use, and farm size (see Appendix Table C.1).

We supplement the agricultural censuses with data from the Municipal Agricultural

3Namely, those who listed Agronomia, Ciência e Tecnologia de Alimentos, Engenharia Agrícola, Recursos Florestais
e Engenharia Florestal, Recursos Pesqueiros e Engenharia de Pesca, andZootecnia, all subfields of the “Agricultural
Sciences” field, following the CNPq classification.

4We merged all publications in the database to the metadata of the associated journal, including journal
publishing institution, country, and impact factor (SciELO, 2025; SCImago, 2025; Elsevier, 2025).
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Production (PAM) survey from 1974 to present, which collects annual information on the
output and land devoted to sixty-four crops and products across all municipalities (IBGE,
2023). PAM has the advantage of covering a much broader set of crops than the census.

Finally, since Brazil’s municipal borders shifted during the sample period, to make
geographic units consistent over time we follow Brazil’s statistical agencies and link all
data to minimal consistent border units (Área Mínima Comparável, AMC) (IBGE, 2011).

Geo-spatial and Ecological Data. Finally, we compile data on Brazil’s ecological char-
acteristics. First, we categorize regions of Brazil into its major biomes, using the biome
classification from Brazil’s main statistical agency (IBGE, 2024).5 Figure 2 displays the
distribution of these biomes, with Embrapa’s research centers superimposed. This varia-
tion in ecology, much of which is unique to Brazil and not present in parts of the world
where most agricultural innovation takes place, was a driving motivation behind Em-
brapa. Second, we compile data on the geographic distribution of Brazil’s most damaging
crop-affecting pests and pathogens (see Appendix Table A.1) using data from the Center
for Agricultural Biosciences International Crop Protection Compendium. We identify the
set of Brazilian states in which each pest and pathogen is known to be present. Together
with the biome classifications—and our data on research by topic—these data allow us
study how the expansion of Embrapa to new ecological zones shifted research focus.

Last, to quantify ecological differences across Brazilian municipalities, we use geo-
spatial data on the distribution of nine agro-climatic characteristics that are critical to
agricultural production, including temperature, precipitation, elevation, ruggedness, the
length of the growing season, soil acidity, soil clay content, soil silt content, and soil coarse
fragment content (see Appendix Table A.2).6 We normalize each characteristic across mu-
nicipalities and use these values to construct a measure of ecological distance between
municipalities and Embrapa research centers, which is a central element in our evaluation
of the impacts of Embrapa’s expansion on agricultural productivity in Section 5.1.

4 Results: Embrapa and Agricultural Research

In this section, we investigate the effect of Embrapa on agricultural research in Brazil.
First, we analyze how Embrapa shifted the direction of innovation. Second, we investigate

5The six Brazilian biomes are (a) the Amazon (49% of Brazil), a dense tropical rainforest; (b) the Cerrado
(24% of Brazil), a tropical savanna; (c) the Atlantic Forest (13% of Brazil), a forested region along the Eastern
seaboard; (d) the Caatinga (10% of Brazil), a semi-arid biome unique to northeastern Brazil; (e) the Pampa
(2% of Brazil), temperate grasslands; and (f) the Pantanal (2% of Brazil), theworld’s largest tropical wetland.

6Our focus on this set of characteristics builds on Bazzi et al. (2016) and Moscona and Sastry (2025), who
confirm that these characteristics are key determinants of crop-specific technology and knowledge transfer.
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how Embrapa affected the productivity of innovation, particularly as it expanded to more
remote parts of the country where existing research infrastructure was more limited.

4.1 The Direction of Research: Ecological Conditions

We first investigate whether employment at Embrapa shifted researchers’ focus toward
Brazilian ecological conditions, exploiting our topic-labeled database of all agricultural
research publications. We define articles related to Brazilian ecological conditions as those
thatmention one of Brazil’s major biomes or those thatmention one of Brazil’s major crop-
affecting pests and pathogens. Our main regression equation is:

I{Article p mentions topic k}prit = β · I{Embrapa}pit + αt + δi + εprit, (1)

where r indexes researchers, i indexes municipalities, and t indexes years. The unit of
observation is an article p and I{Embrapa}pit is an indicator that equals one if the article
was written by an individual employed by Embrapa in year t. The outcome is an indicator
that equals one if the article mentions (i) one of Brazil’s biomes or (ii) one of Brazil’s major
crop-affecting pests or pathogens.

One reason researchers at Embrapa may have been disproportionately likely to study
Brazil’s ecological conditions is that Embrapa set up centers in parts of the country where
existing research was limited. This difference in where research takes place could go a long
way in determining the areas of focus since crop breeding and agricultural technology
development often have to be finely tailored to the local environment (see Section 2.2). As
a preliminary test of this mechanism, we include municipality fixed effects δi in estimates
of equation (1); if the location of research drives the differential focus of Embrapa research,
we would expect the main effect to be attenuated when location fixed effects are included.

In Figure 3a, we report our estimates of β normalized by the mean of the outcome
variable. Embrapa researchers write significantly more articles about Brazilian biomes
and crop-affecting pests. The effects are equal to 74% and 64% of the sample mean, re-
spectively (first and third bars). Moreover, the estimates are substantially attenuated after
including municipality fixed effects (second and fourth bars) suggesting that the location
of Embrapa’s research can explain a large share of the differential research focus.

We next provide direct evidence that research is disproportionately focused on local
ecological conditions. We collapse the article-level database to the municipalities-topic-
year level and estimate the following regression model by Poisson maximum likelihood:

Articlesikt = exp{ξ · I{Local}ik + αkt + δit + εkit} (2)
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Figure 3: The Direction of Research Across Ecological Conditions
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Notes: In Panel A, the unit of observation is an article, and each bar represents a coefficient estimate from
equation (1). We report β normalized by themean of the outcome variable. In the first two bars, the outcome
is an indicator that equals one if the article mentions a Brazilian biome and in the second two bars, the
outcome is an indicator that equals one if the article mentions a Brazilian pest or pathogen. The second and
fourth bars includemunicipality fixed effects as controls. In Panel B, the unit of observation is amunicipality-
topic pair, and each bar represents a coefficient estimate from equation (2). In both panels, standard errors
are clustered by municipality and 95% confidence intervals are reported.

where the outcome variable is the total number of articles written about topic k in munici-
palities i and year t. Again, we define two sets of topics k: Brazil’s biomes and Brazil’s ma-
jor pests and pathogens. When we focus on biomes, I{Local}ik is an indicator that equals
one if municipality i is located within biome k (see Figure 2). When we focus on pests,
I{Local}ik is an indicator that equals one if the municipality i is located in a state where
pest k is present. If research is directed toward local ecological conditions, we would ex-
pect that ξ > 0 in both cases; that is, research focuses on the local biome or on pests and
pathogens that are locally present.

Estimates of equation (2) are reported in Figure 3b. Researchers are substantially more
likely to publish articles related to their local environment. In addition to highlighting the
mechanism underlying Embrapa’s re-direction of research, this finding directly motivates
our empirical strategy in Section 5 that uses ecological similarity to Embrapa’s research
centers as a shifter of the ecological suitability of new technology development.
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Figure 4: The Direction of Research Across Crops
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Notes: The unit of observation is an article and each bar represents a coefficient estimate from equation (1).
The outcome is an indicator that equals one if the article mentions one of Embrapa’s focus crops (beans, cas-
sava, maize, rice, soy, and wheat). In the second column, municipality fixed effects are included as controls,
and in the third column, both municipality and researcher fixed effects are included as controls. Standard
errors clustered by municipality and 95% confidence intervals are reported.

4.2 The Direction of Research: Crops

In addition to focusing on building knowledge about under-studied ecological zones, Em-
brapa also set its focus on a handful of staple crops that were most relevant for food con-
sumption (Martha Jr et al., 2012). This was a departure from pre-existing agricultural
research in Brazil, much of which had concentrated on historically high-value cash crops
for export, such as coffee and sugarcane.

In this section, we study the extent to which Embrapa has redirected research focus
across different crops. To do so, we estimate a version of equation (1) in which the out-
come is an indicator that equals one if the article mentions one of Embrapa’s focus crops
(beans, cassava, maize, rice, soy, and wheat). Figure 4 presents our results. Researchers
employed by Embrapa are substantially more likely to study these staple crops. Unlike
ecological conditions, this effect is not driven by geographic location, since estimates are
similar after including municipality fixed effects (second column). Moreover, the estimate
is similar after including researcher fixed effects, suggesting thatmoving to Embrapa leads
researchers to shift their focus toward Embrapa’s focus crops (third column).

These results motivate a refinement of our main identification strategy in Section 5. To
ensure that our estimated effect of Embrapa on productivity is driven by new technology
development, we exploit variation in exposure to Embrapa not only across locations (due
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to their differential ecological similarity to Embrapa’s centers) but also across crops (due
to the fact that certain crops were the focus of Embrapa’s research while others were not).

4.3 Aggregate Effects and Crowd-Out

So far, we have focused on how Embrapa shaped the direction of research at the individ-
ual level. However, the fact that Embrapa shifted individuals’ research focus does not
necessarily imply that it shifted the aggregate direction of innovation across topics. One
possibility, for example, is that researchers employed by Embrapa crowded out research
that would have taken place anyway. If this is the case, Embrapa could have had no impact
on the overall amount of research conducted on its priority areas.

To investigate how the expansion of Embrapa shifted the aggregate focus of research,
we exploit the opening of new Embrapa research centers over time and estimate the effect
on the national distribution of research across topics. Our regression model is:

Articleskt = exp{γ · Centerskt + αk + δt + εkt} (3)

where Articleskt is the total number of articles written in Brazil about topic k in year t and
Centerskt is the number of Embrapa centers focusing on topic k. We exploit the fact that
certain Embrapa centers had an explicit focus on certain crops (e.g., Embrapa Rice and
Beans located in Santo Antônio de Goiás) or were located in specific biomes to learn about
local ecology. Using this information, we estimate versions of equation (3) across crops
and biomes. When k indexes crops, Centerskt is the number of centers as of year twith an
explicit focus on crop k, and when k indexes biomes, Centerskt is the number of Embrapa
centers as of year t that are located in biome k. γ > 0 would imply that Embrapa shifted
the overall direction of innovation.

Figure 5 reports our estimates of equation (3). Across both margins, the expansion of
Embrapa significantly shifted the aggregate focus of agricultural research (γ > 0; first and
third bars). While no Embrapa centers had an explicit focus on individual pests, we esti-
mate a version of equation (3) in which k indexes pests and Centerskt is the number of cen-
ters located in states in which the pest is present; we estimate a smaller but still positive ef-
fect (γ = 0.0502, S.E.= 0.0172). One potential concern is that Embrapa centerswere opened
in response to aggregate research trends. However, we find no evidence of pre-existing
trends: future changes in Embrapa center openings are not correlated with the current
direction of research (second and fourth bars). The direction of research shifts only after
newEmbrapa centers open.7 This aggregate effect is driven by an increase both in research
7Specifically, we estimate equation (3) after adding Centersk(t+1) in addition to Centerskt.
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Figure 5: Embrapa and the National Direction of Research
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Notes: Each pair of bars corresponds to an estimate of equation (3) that includes both the contemporane-
ous and one-year leading (future) value of Centerskt, in addition to topic and time fixed effects. The unit
of observation is a biome-year in the first two columns and a crop-year in the second two columns. Het-
eroskedasticity robust standard errors are constructed and 95% confidence intervals are reported.

conducted by Embrapa affiliates and research conducted by other, non-Embrapa scientists
(see Appendix Figure C.2). This result indicates that if anything, Embrapa-sponsored re-
search had positive spillovers on other researchers (i.e., “crowd in”).

4.4 Research Productivity

We now investigate how Embrapa affected researcher productivity. Embrapa’s incentives
to carry agricultural research to new parts of the country and new topics may have come
at the expense of research productivity. This is both because there could be major inef-
ficiencies in large-scale government programs like Embrapa, and because, as part of its
strategy to cover topics and ecosystems that had not been the focus of prior innovation,
Embrapa expanded to regions with limited pre-existing research infrastructure and po-
tentially lower overall research productivity.

To study the impact of Embrapa on researcher productivity—both in research hubs
and in more remote parts of the country—we use a movers-based design to test how em-
ployment at Embrapa affects research output. Our baseline specification is:

yrit = β · I{Embrapa}rit + αr + ξi + δt + γa(i,t) + εrit, (4)

where yrit is a monotone transformation of the number of papers published by researcher
r in year t and municipality i, I{Embrapa}rit is an indicator that equals one if researcher
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i is employed by Embrapa at time t, and αr is a researcher fixed effect. δt is a year fixed
effect, ξi is a municipality fixed effect, and γa(i,t) is a set of tenure fixed effects.8

We also estimate the effect of Embrapa separately in traditional research hubs and in
more remote areas where it hoped to expand agricultural research. To do this, we include
interaction terms between I{Embrapa}rit and indicators that equal one if the municipality
is in the top ten in terms of either total agricultural research output or human capital (as
proxied by the share of college graduates).9 A key question is whether Embrapa—by link-
ing researchers across centers and connecting all affiliated researchers to its national re-
search network—was able to overcome the research productivity disadvantages that may
have existed in more remote areas where it hoped to spur new innovation.

Table 1 reports estimates of equation (4). Working for Embrapa is associated with
higher research output, even conditional on individual fixed effects that absorb any dif-
ferences in ability (column 1). This is despite the fact that, if anything, Embrapa-affiliated
researchers haveweaker publication incentives than researchers at other institutions given
the emphasis on immediate translation and application (Martha Jr., 2025). The results are
similar after absorbing municipality-by-year fixed effects that control for any changes in
local policy, local funding, or other trends (column 2).

Next, we investigate how the effect ofworking at Embrapa varies across regions (columns
3-6). Intuitively, we find that moving outside one of the top twenty research hubs is as-
sociated with a decline in research productivity, captured by the coefficient on the “Low
Research” indicator. However, working for Embrapa fully reverses the productivity dis-
advantage of these more remote regions (column 3). The positive association between
employment at Embrapa and research productivity estimated on the full sample is driven
almost entirely by the effect of Embrapa outside of traditional research hubs. The findings
are similar defining research hubs based on the total output of agricultural innovation
(columns 3-4) or based on the share of the population with a college degree (columns 5-
6), and the point-estimates are very similar after fully absorbing all municipality-specific
trends (columns 4 and 6). These results indicate that Embrapa’s organizational structure
enables high research productivity even in remote regions.

Turning to dynamics, we show that there is no evidence of pre-existing trends: movers’
research productivity rises only after moving to an Embrapa center, and this effect remains
concentrated in centers outside of traditional research hubs (Appendix Table C.2). More-
over, results are similar if we quality adjust the outcome by weighting each publication by

8We calculate researcher tenure as the current year minus the first recorded year of any employment spell.
9The results are very similar if we choose alternative cut-offs (e.g., define the hubs as the top fifteen or twenty
municipalities by research output or college graduates).
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Table 1: Effects of Embrapa Affiliation on Researcher Productivity
ihs(Number of Papers)

(1) (2) (3) (4) (5) (6)
Embrapa 0.081*** 0.087***

(0.027) (0.029)
Embrapa x Low Research 0.203*** 0.189*** 0.121*** 0.119***

(0.072) (0.067) (0.028) (0.026)
Embrapa x High Research -0.019 0.048 0.043* 0.061**

(0.063) (0.069) (0.024) (0.026)
Low Research -0.077*** -0.016**

(0.020) (0.007)
Adj. R2 0.428 0.454 0.430 0.455 0.428 0.454
Observations 530672 519562 530672 519562 530377 519291
Heterogeneity - Previous Research College Degree
Year FE Y Y Y Y Y Y
Municipality × Year FE – Y – Y – Y
Researcher FE Y Y Y Y Y Y
Tenure FE Y Y Y Y Y Y

Notes: Estimates of equation (4), with the inverse hyperbolical sine of publications as the dependent variable
are reported. Columns 3-6 interact the Embrapa indicatorwith an indicator for low or high research capacity
in the municipality, defined using either previous agricultural research (columns 3-4) or the share of college
graduates (columns 5-6). All regressions include year, researcher, and job tenure fixed effects. Columns 2,
4, and 6 include municipality-year fixed effects. Standard errors clustered by municipality.

its journal impact factor and if we use alternative parameterizations of the dependent vari-
able (Appendix Table C.3). Thus, the findings are not driven by insubstantial publications
or by the functional form of our regression specification.

Together, these estimates suggest that Embrapa shifted the focus and geography of
agricultural researchwithout sacrificing research productivity. While researchers are gen-
erally less productive outside of Brazil’s main research hubs, Embrapa researchers are not,
due to the organization’s larger productivity advantage in remote areas.

5 Results: Embrapa and Agricultural Productivity

The previous section has explored the effects of Embrapa on the direction andproductivity
of agricultural research. We now study the effects of Embrapa on agricultural productiv-
ity. Wedevelop an empirical strategy that exploits time-series variation from the staggered
introduction of Embrapa’s research centers and cross-regional variation in the suitability
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of Embrapa’s technology for different ecological conditions. After establishing that Em-
brapa had a large, positive impact on agricultural productivity, we decompose this effect
across different margins of outputs and inputs and explore whether the effects were more
pronounced for staple crops targeted by Embrapa’s technology development.

5.1 Empirical Strategy

Measuring the returns to a large-scale R&D investment on economic productivity is chal-
lenging due to a fundamental trade-off between ruling out confounding effects and cap-
turing indirect effects. One strategy in existing work is to focus on aggregate productivity
outcomes, like the yields for major crops visualized in Figure 1. While the trend break in
productivity for staple crops in the 1970s is suggestive of a large effect of policy changes
at this time (Klein and Luna, 2023), it is difficult to isolate the role of a single policy of
interest (e.g., the founding and expansion of Embrapa) from other factors and time-series
trends taking place over the same period.

Another strategy is to break down large-scale investments in R&D into specific tech-
nologies that resulted from these investments, and develop tailored models to estimate
their productivity effects and social returns (e.g., Pardey et al., 2006). This approach is
challenging because it requires first identifying all relevant technologies and then account-
ing for the difference between their social and private returns, which involves measuring
for knowledge spillovers, crowd-out of private investment, and rent-sharing between in-
novators and technology users. The private returns to R&D can differ substantially from
overall benefits, often representing a tiny fraction of the overall benefits (Griliches, 1979;
Nordhaus, 2004). Moreover, even accounting for only the private value of new technol-
ogy is a challenging task, requiring myriad intermediate assumptions (see Azoulay et al.,
2019, for a discussion). A further concern is whether case studies of particular technolo-
gies might “pick winners” and thereby overstate impacts (Jones and Summers, 2020).

In light of these challenges, we develop a different approach to estimate the effect of
Embrapa on productivity at the regional level. Using regional data allows us to account for
indirect effects while also sweeping out the major confounding forces and policy changes
that operate at the national level. In what follows, we use this strategy to measure the
effects of Embrapa on agricultural productivity as well as other agricultural outcomes. In
conjunction with an economic model and detailed data on investment costs, we then use
the same approach to estimate the aggregate returns to public R&D (Section 6).
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5.1.1 Measuring Embrapa Exposure

Our empirical strategy is based on ameasure of exposure to Embrapa’s research that varies
across both time and space. The time-series variation comes from the staggered introduc-
tion of Embrapa’s research centers. The cross-sectional variation comes from the bilateral
ecological similarity between Brazilian municipalities, which we treat as a shifter of the dif-
ferential suitability of Embrapa’s technologies across municipalities.

Conceptually, our approach is motivated by three observations. First, as shown in
Section 4, agricultural research in Brazil is heavily focused on targeting local ecosystem
characteristics. Second, narrative accounts of Embrapa’s history put special emphasis on
the development and diffusion of technologies specific to particular ecological regions of
Brazil, such as agricultural liming techniques for the central Cerrado and soybean vari-
eties bred to survive in tropical soils (Correa and Schmidt, 2014). Third, existing work
has documented that ecological similarity between locations of invention and locations of
use is a strong predictor for the diffusion and eventual productivity effects of agricultural
technology (e.g., Griliches, 1957; Moscona and Sastry, 2025).

Our specific measure of ecological similarity, based on prior work by Bazzi et al. (2016)
and Moscona and Sastry (2025), is an index that aggregates similarity in climate, topogra-
phy, and soil characteristics. For each pair of municipalities i and j, we measure the sum
of absolute deviations

Ecological Similarityij = −
∑
x

|xi − xj|, (5)

across the nine ecological characteristics that we collect x. We express all of these char-
acteristics in z-score units, normalized by their mean and standard deviation across all
municipalities. A higher value of Ecological Similarityij means that i and j are more eco-
logically similar, implying that agricultural technology designed in or for municipality i

is more likely to be suitable in municipality j.
Combining our time-series and cross-sectional variation, we measure each municipal-

ity’s changing exposure to Embrapa’s research as:

Embrapa Exposureit = max
j∈Rt

Ecological Similarityij (6)

where Rt is the set of centers that exist by time t. In words, this measure captures each
municipality’s ecological similarity to the most ecologically similar Embrapa center that
exists as of time t. Cross-sectional variation in Embrapa Exposureit comes from the net-
work of pairwise ecological similarity across municipalities, as captured by variation in
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Figure 6: Embrapa Exposure Across Space and Time
(a) Similarity to Embrapa Trigo (b) Similarity to Embrapa Pantanal

(c) Embrapa Exposure in 1974 (d) Change in Exposure, 1974 to 2006

Notes: Panels (a) and (b) display ecological similarity, defined in equation (5), with respect to Embrapa Trigo
(Wheat) and Pantanal, whose locations are colored in orange. Panel (c) shows Embrapa Exposure in 1974,
defined in equation (6). Panel (d) shows the change in Embrapa Exposure from 1974 to 2006. In all panels,
we linearly project out physical distance to the nearest Embrapa center.

Ecological Similarityij . Time-series variation comes from the fact that new centers are
founded over time, shifting each municipality’s most appropriate Embrapa center.

To illustrate the variation underlying this measure, Figure 6a plots each municipality’s
ecological similarity to the Embrapa center for Wheat and Figure 6b plots the same for the
Embrapa Pantanal. The technology developed in these two research centers would have
served very different parts of the country. The municipalities most ecologically similar to
Embrapa Wheat are in the South East and Northern Brazil, while the municipalities most
ecologically similar to Embrapa Pantanal are in central Brazil. More generally, as new
centers opened over time, the parts of the country that were positioned to benefit from
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Embrapa research shifted dramatically. Figure 6c plots Embrapa Exposureit as of the end
of 1974, when only the first handful of research centers had been opened, while Figure 6d
plots the change in Embrapa Exposureit over the course of the sample period.

5.1.2 Estimating Equation and Identification

Our baseline specification to estimate the effect of Embrapa on agricultural outcomes is:

yit = β · Embrapa Exposureit + χi + χt + γ′Xit + εit, (7)

where yit is the outcome of interest, χi and χt are municipality and census wave fixed
effects, andXit is a vector of time-varying controls. The coefficient β captures the extent to
which exposure to Embrapa’s research affected agricultural outcomes. Standard errors are
clustered bymunicipality in our baseline analysis, but the precision of our estimates is very
similar using Conley (1999) standard errors to adjust for spatial correlation or clustering
standard errors by state (see Appendix Table C.7).

Our main outcome variable yit is agricultural productivity, measured as the logarithm
of total agricultural production value divided by total farm area. We also estimate the
effect of Embrapa exposure on a number of other alternative measures, including land
values and crop yields, and decompose the effect on productivity into changes in input,
technology, land use, and total factor productivity.

The central identification assumption is that the founding of new Embrapa centers
was orthogonal to agricultural production trends in ecologically similar (compared to eco-
logically distant) municipalities. That is, we assume that when a new Embrapa center is
opened, ecologically similar municipalities are on similar trends to ecologically distant
ones. One potential concern is that ecological similarity to an Embrapa center is corre-
lated with physical distance, both because precise research center locations were chosen
under a range of constraints and because physical proximity to a research center could
have benefits (e.g., extension services) beyond the impact of new innovation. To address
this, we show that controlling flexibly for geographic distance to research centers, or fully
excluding municipalities that are close to any center, have little impact on our estimates.
If anything, the coefficient magnitude increases after making these restrictions. We also
present pre-trend analysis and a host of falsification exercises to further support a causal
interpretation of our findings.
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Table 2: Embrapa Exposure Increases Agricultural Productivity
(1) (2) (3) (4) (5) (6)

Panel A: Baseline Results
Embrapa Exposure 0.730*** 0.825*** 0.985*** 0.844*** 0.819*** 0.599***

(0.080) (0.084) (0.120) (0.084) (0.084) (0.086)
Observations 18386 18109 11821 18101 18101 18109
R2 0.954 0.954 0.945 0.955 0.955 0.976

Panel B: Weighted by 1970 Agricultural Area
Embrapa Exposure 0.758** 1.266*** 1.141*** 1.277*** 1.272*** 0.824***

(0.302) (0.244) (0.196) (0.242) (0.243) (0.221)
Observations 18372 18101 11818 18101 18101 18101
R2 0.964 0.965 0.961 0.965 0.966 0.980
Municipality FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
log(Distance to Embrapa) x Round FE - Y Y Y Y Y
Drop if < 100km from Embrapa - - Y - - -
Drop if neighbor to Embrapa - - Y - - -
log(Initial Prod.) x Round FE - - - Y Y -
log(Initial Pop.) x Round FE - - - - Y -
State x Round FE - - - - - Y

Notes: The unit of observation is a municipality-census-round pair, where municipalities are harmonized to
minimal consistent border units (IBGE, 2011). The regression model is equation (7). The outcome variable
is the log of production value per farm area. In Panel B, estimates are weighted by each municipality’s
agricultural area in 1970. The control variables included are: distance (in km.) to the nearest Embrapa center
times census-round fixed effects; log of production value per farm area in 1970 interactedwith census-round
fixed effects; log of population in 1970 interacted with census-round fixed effects; and state by census-round
fixed effects. In column 3, we drop municipalities that are ever less than 100 km from an Embrapa center or
neighbor a municipality with an Embrapa center. Standard errors are clustered at the municipality level.

5.2 Embrapa Increases Agricultural Productivity

Table 2 presents our main estimates of equation (7) using log of agricultural production
value per area as the outcome. Panel A reports our baseline estimates and Panel B reports
estimates in which each observation is weighted bymunicipality agricultural area in 1970.
We find that β is positive and significant (p < 0.01): exposure to Embrapa increases agri-
cultural productivity. The magnitude of the effect in Column 1 implies that an increase in
Embrapa Exposure equal to one cross-sectional standard deviation increases agricultural
productivity by 12%. Later, in Section 6, we revisit the calculation of aggregate, time-series
gains by integrating our estimates with a more structured economic model.

We next show that the baseline result is not driven by geographic proximity to research
centers. The estimate is quantitatively similar after controlling for (the logarithm of) dis-
tance to Embrapa centers interacted with census-round fixed effects, thus allowing for a
flexibly time-varying effect of proximity (column 2). The result is also stable under a more
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conservative strategy of additionally restricting the sample to municipalities that neither
border an Embrapa research center nor are within 100 km of one (column 3). Our main
estimates are therefore not merely picking up the effects of proximity to a research center,
which could proxy for extension services, access to information about Embrapa, or other
stimulative effects of Embrapa on the local economy. Instead, the estimated effect on geo-
graphically distant but ecologically similar locations is consistent with our interpretation
that the results capture variation in the ecological suitability of new technology.

The results are also similar controlling flexibly for pre-existing trends related to initial
agricultural productivity (column 4) and population (column 5). These estimates suggest
that the main result is not biased by mean reversion or other trends in local economic out-
comes. Finally, to further zoom in on the precise geographic variation spanned by our ex-
posure variable, we find that effect of Embrapa is also virtually unchanged after including
state-by-year fixed effects (column 6), which fully absorb any different trends in state-level
research investments (e.g., at state universities) or agricultural support mechanisms.

In additional results, we find that Embrapa Exposure has a positive effect on other
measures of agricultural productivity (Appendix Table C.4). The first is the value of crop
output per area, which we compute by summing the output of each major crop listed in
the census weighted by its national price in 1970 (Panel A). Compared to our baseline, this
measure focuses entirely on crop (rather than livestock) output and, by construction, does
not take into account local variation in output prices. Potentially for both reasons, we find
larger coefficient estimates compared to our baseline. The second productivity measure is
local farm value per acre, which captures the effect of Embrapa on the net present value of
future agricultural profits under a hedonic interpretation (Panel B). These findings suggest
that new technology development was capitalized into local land values.

The third and fourth are measures of local agricultural TFP, measured as total pro-
duction value relative to input use. We use a four-factor production function (land, labor,
capital, and intermediates) calibrated to the estimates of Fuglie (2015) for Brazil.10 Because
Fuglie’s (2015) estimates suggest a significant decline in the importance of labor and land
and increase in the importance of intermediates of capital, we use two different calibra-
tions: one designed to match Brazilian agriculture in the 1970s (Panel C) and another de-
signed to match Brazilian agriculture in the 2010s (Panel D). The effects on both measures
are positive, but smaller than the effects on output over land value. That is, intensification

10We define TFP = Y /(NαNLαLMαMKαK ), where we measure output Y as the value of agricultural pro-
duction, laborN as the total number of workers, intermediatesM as the sum of expenditure on fertilizers,
seeds, and chemical defenses (e.g., insecticides, herbicides, and fungicides), and capital K as the number
of tractors. The “1970s” calibration sets αN = 0.342, αL = 0.342, αK = 0.167, and αM = 0.057, and the
“2010s” calibration sets αN = 0.083, αL = 0.373, αK = 0.214, and αM = 0.331.
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Figure 7: Embrapa Affects Productivity Contemporaneously, with no Anticipation
(a) Contemporaneous Exposure
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(b) Future Exposure
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Notes: The regression model is equation (7), augmented with the leading value Embrapa Exposurei,t+1,
and controlling for distance to the nearest Embrapa center times round fixed effects and state times round
fixed effects. The left and right panel respectively show the binned scatterplot of the outcome, log of pro-
duction value per farm area, against the contemporaneous value Embrapa Exposurei,t and the lead value
Embrapa Exposurei,t+1. In each case, the binned scatterplot partials out other variables and the included
fixed effects. The printed t-statistics are based on standard errors clustered by municipality.

of variable inputs explains some but not all of the increase in output per land area, leaving
a sizable remainder to TFP growth. We further explore this breakdown in Section 5.3.1.

We finally observe that our findings are not driven by any single component of the
ecological similarity index (equation (5)). Appendix Figure C.3 reports estimates after
dropping each component from the measure. The results are very similar across all com-
ponents and outcome variables. This suggests that our findings are not unduly sensitive
to the precise method for measuring ecological similarity in our treatment variable.

5.2.1 Dynamics

So far, we have studied the effect of exposure to Embrapa on productivity in same decade
or five-year period (i.e., within census round). We next investigate dynamics.

First, we show that there is no relationship between changes in Embrapa exposure
and pre-existing changes in productivity since the prior census round. To do this, we
estimate an augmented version of equation (7) that also includes the leading value of
Embrapa Exposureit as a regressor. The coefficient on the contemporaneous value re-
mains positive and significant (p < 0.01) while the coefficient on the leading value is small
in magnitude and indistinguishable from zero (Figure 7). Thus, the main results do not
seem to be driven by pre-existing trends, which are flat and insignificant.

Next, to study the long-run effects of Embrapa, we estimate long-difference regres-
sions that capture how changes in exposure to Embrapa affected changes in productivity

29



Figure 8: Long Difference Estimates and Pre-Existing Trends
(a) Unweighted
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(b) Weighted by Agricultural Area

-.5
0

.5
1

1.
5

2
2.

5
Ef

fe
ct

 o
f E

m
br

ap
a 

Ex
po

su
re

log(Prod Value /
Area)

log(Farm Value /
Area)

log(Agricultural
Yield)

log(Ag. TFP,
Pre Weights)

1970-2006
Long Diff.

1960-1970
Pre-Trend

1970-2006
Long Diff.

1960-1970
Pre-Trend

1970-2006
Long Diff.

1970-2006
Long Diff.

Notes: The regression model is equation (8), and we control for the logarithm of distance to the nearest
Embrapa center and state fixed effects. The top panel reports unweighted estimates, and the bottom panel
reports estimates weighted by farmland in 1970. The outcome variables are listed at the bottom of each
panel: log of total production value per area, log of crop yields, log of total farm value per area, and log
of agricultural TFP, based on weights corresponding to Brazilian agriculture in the 1960s (see Fuglie, 2015).
For blue bars, the outcome is the difference in each variable between 1970 and 2006 and for green bars, the
outcome is the difference in each variable between 1960 and 1970. 95% confidence intervals are reported.

over the full sample period. Accounting for these longer-run effects could be important to
the extent that research investment had dynamic knowledge spillovers or new technology
took time to diffuse and generate returns. The estimating equation is:

∆yi = β ·∆Embrapa Exposurei + γ′Xi + εi (8)

where ∆Embrapa Exposurei is the change in Embrapa Exposureit from 1970 to present
and Xi includes geographic distance to the nearest Embrapa center and state fixed effects
(i.e., the equivalent specification to column 6 from Table 2).

Figure 8 (blue bars) presents long-difference estimates for our four main outcome vari-
ables, using both unweighted (Panel A) and farmland area weighted (Panel B) regression
specifications. These long-difference effects are 30-40% larger than our baseline estimates,
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Figure 9: Falsification Tests

(a) Randomizing Across Geography and Time (b) Randomizing Across Time Only
Notes: Each sub-figure reports placebo draws from separate falsification exercises. In Panel (a), we simulate
4,000 alternative Embrapa expansion patterns, randomizing both the locations of the 40 centers and the
opening year. We restrict the set of municipalities with a research center to those above 90% of theminimum
municipality population across all actual centers in the opening year, and we use the empirical distribution
of years with a center opening. In Panel (b) we randomize only the timing of center openings. For each
counterfactual, we repeat estimate equation (7) and report a histogram of the resulting coefficient estimates.
The coefficient estimate using Embrapa’s actual expansion pattern is displayed with a vertical red line.

suggesting that some of the effect takes longer than a decade to materialize.
Finally, we compare these long-difference estimates to changes in productivity prior to

the expansion of Embrapa as a further test for pre-existing local productivity trends. Due
to differences in data collection during census rounds before 1970, this is only possible
for crop yields and agricultural land values. We find no evidence that Embrapa exposure
is positively correlated with changes in these outcomes prior to the establishment of Em-
brapa (Figure 8, green bars). Like our in-sample pre-trend analysis, these findings suggest
that exposure to Embrapa was not related to pre-existing productivity dynamics.

5.2.2 Falsification Tests

To further support a causal interpretation of the findings, we conduct a falsification test in
which we randomize the geography and timing of the expansion of Embrapa and investi-
gate whether exposure to these counterfactual expansion patterns has a similar effect on
changes in productivity. If, for example, there were pre-existing positive trends in parts
of Brazil that are ecologically remote, then even placebo expansion patterns for Embrapa
would spuriously correlate with these pre-existing trends, and there would be no addi-
tional effect of true exposure to Embrapa. If, on the other hand, our main results capture
the causal effect of exposure to Embrapa, then our estimates should be in the far right tail
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of the counterfactual coefficient distribution. Reassuringly, whether we construct placebo
Embrapa expansion paths by randomizing both the location and timing of Embrapa center
openings (Figure 9a) or by randomizing just the timing, thereby exploiting only the tem-
poral component of our identification strategy (Figure 9b), our main estimate is in the far
right tail of the placebo coefficient distribution. These results rule out the possibility that
our baseline findings are driven by spurious trends, which would likely lead to similar
estimates regardless of the exact timing of Embrapa’s center opening.11

5.2.3 Heterogeneous Effects and Inequality

Our main analysis has focused on the effect on overall agricultural productivity in munic-
ipalities. However, in principle, Embrapa may have also affected inequality both across
and within regions. Across regions, we test for heterogeneous effects of Embrapa Expo-
sure on agricultural productivity in regions that differ in their baseline productivity and
farm size. We find no statistically significant differences and, if anything, slightly larger ef-
fects for less-productive regions (Appendix Figure C.4). Within regions, we test the effect
of Embrapa exposure on average size and the Gini coefficient of the farm size distribution.
We find a null effect on average farm size and a negative effect on farm size inequality
(Appendix Table C.6). Together, these estimates suggest that the expansion of Embrapa
led to an increase in productivity without a corresponding increase in inequality.

5.3 Mechanisms

Having documented that exposure to Embrapa had a large positive effect on agricultural
productivity, we next investigate the mechanisms underlying this main result. First, we
study the effect of Embrapa on technology, input, and land use. Second, using annual
data on crop-level output in each municipality, we show that the effects of Embrapa on
productivity are concentrated only in the crops that were an explicit focus of Embrapa
innovation. This is further evidence that innovation is the key driving mechanism.

5.3.1 Input Intensification and Land Conversion

Figure 10 reports estimates of equation (7) that describe the impact of Embrapa on input
and land use. First, we show that Embrapa had a large positive effect on intermediate
input and technology use, including fertilizers, seed, and chemicals (column 1). These

11In Appendix Table C.5, we control for the expected value of the treatment variable from simulations that
vary the timing of center openings, following the logic of Borusyak and Hull (2023). The estimates are
quantitatively similar to those in the baseline table (Table 2).
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Figure 10: Embrapa Exposure and Agricultural Inputs
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Notes: The unit of observation is a municipality-census-round pair, where municipalities are harmonized
to minimal consistent border units (IBGE, 2011). The regression model is equation (7) and, in each specifi-
cation, we control for the logarithm of distance (in km.) to the nearest Embrapa center times census-round
fixed effects and state by census-round fixed effects. The outcome variables, denoted below each bar, are (all
in logarithms): the total expenditure on fertilizers, seeds, and chemicals; fertilizers; seeds; chemical defenses
(e.g., insecticides, herbicides, and fungicides); number of tractors; number of workers; all agricultural land;
agricultural land for crops; and agricultural land for pasture. Standard errors are clustered at the munici-
pality level and error bars are 95% confidence intervals.

are all areas that were the focus of Embrapa’s research; thus, this finding indicates that
research led to meaningful changes in farmers’ technology and input use. The positive
effect on total intermediate input use is driven by independent positive effects on fertilizer
use (column 2), seed use (column 3), and especially chemical use (column 4).

Second, we investigate the effect on other variable inputs. Embrapa exposure is associ-
atedwith increasedmechanical input use (column 5) and also increased labor use (column
6). However, the effect on labor is substantially smaller than the effect on other inputs and
less than one third the magnitude of the effect on intermediate inputs, implying that agri-
cultural production became less labor intensive.

Third, we find that Embrapa led to an expansion of cropland (column 7), driven by an
increase in land devoted to crop production (column 8), over half of which came from land
that was converted from pastureland (column 9). The positive effect on cropland is larger
in absolute value than the negative effect on pasture land, driven by the fact that technol-
ogy development also opened new land for agricultural production. The negative effect
on pasture land, likely due to Embrapa’s research focus on crop technology rather than
livestock, also recalls the earlier finding that Embrapa exposure increased crop-specific
production in excess of overall agricultural output (Appendix Table C.4, Panel A). A fur-
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ther implication is that our strategy of focusing on total agricultural output, which wewill
also pursue in our counterfactual analysis in Section 6, properly accounts for this reallo-
cation from pasture to cropland, whereas a strategy that measured gains only for crop
agriculture might over-state the net economic effects of Embrapa.

Finally, it is worth noting that the effect on overall productivity is substantially larger
than the average effect on input use. This underlies our earlier finding that exposure to
Embrapa had a positive effect on measured TFP, computed as production value relative to
an aggregate of variable and non-variable input use (Appendix Table C.4, Panels C-D).

5.3.2 Directed Innovation Across Crops

If innovation is themechanism driving ourmain findings, then Embrapa exposure should
have the largest positive effect on the productivity of crops that were the focus of Em-
brapa’s technology development and little or no effect on crops that were not. We investi-
gate this prediction, exploiting the fact that Embrapa focused its attention on a specific set
of crops that it saw as the priority for staving off food shortages—in particular, beans, cas-
sava, maize, rice, soy, and wheat (Martha Jr et al., 2012). Consistent with these historical
accounts, we showed direct evidence earlier that Embrapa-affiliated researchers focused
disproportionately on these crops in their publication output (see Section 4.2).

We compile data on the output of each crop in eachmunicipality and year from theMu-
nicipal Agricultural Production (PAM) survey. We then investigate the effect of Embrapa
exposure on crop-specific output, separately for crops that were the focus of Embrapa’s
innovation and for crops that were not. In particular, we estimate:

yikt = β1 ·Embrapa Exposureit ·ECk+β2 ·Embrapa Exposureit ·NECk+χik+χtk+εikt (9)

where k indexes crops, yikt is the (log of) either output or yield for crop k in municipality i

and year t, ECk is an indicator that equals one if crop k was one of Embrapa’s focus crops,
and NECk is an indicator that equals one if crop k was not one of Embrapa’s focus crops.
χik and χtk are two-way fixed effects at the municipality-year and crop-year, respectively.
If Embrapa’s technology development drives the positive effect of Embrapa exposure on
productivity, we would expect that β1 > 0 and that β1 > β2.

We find that β1 is large and highly significant, while β2 is close to zero and statistically
insignificant (Table 3). The estimates are qualitatively similar when crop-specific output
is measured in terms of total output (columns 1-4) or yield (columns 5-8). The coeffi-
cient estimates are larger for total output, suggesting that land devoted to Embrapa’s focus
crops also increased but not by enough to offset the positive effect on average productiv-

34



Table 3: Embrapa Increases Output and Yield for Innovation-Focus Crops
Outcome Variable is:

log Crop-Specific Output log Crop-Specific Yield
(1) (2) (3) (4) (5) (6) (7) (8)

Embrapa Exposure × EC 1.426∗∗∗ 1.410∗∗∗ 1.276∗∗∗ 1.279∗∗∗ 0.140∗∗ 0.368∗∗∗ 0.121∗ 0.356∗∗∗
(0.235) (0.348) (0.226) (0.340) (0.066) (0.109) (0.068) (0.110)

Embrapa Exposure × NEC 0.059 0.059 -0.102 -0.102
(0.283) (0.283) (0.095) (0.095)

Observations 188619 188455 180797 180620 188619 188455 180797 180620
R2 0.832 0.876 0.829 0.875 0.937 0.956 0.937 0.957
Crop-Year FE Y Y Y Y Y Y Y Y
Municipality-Crop FE Y Y Y Y Y Y Y Y
Municipality-Year FE - Y - Y - Y - Y
Drop Soybean - - Y Y - - Y Y

Notes: Each column reports an estimate of equation (9) in which the unit of observation is a municipality-
crop-year triplet. Crop-by-year and municipality-by-crop fixed effects are included in all specifications.
Even numbered columns also include municipality-by-year fixed effect, thus fully absorbing Exposure ×
Non-Embrapa Crop. Columns 3-4 and 7-8 drop soy from the sample. The outcome variable is the logarithm
of crop-specific output, measured either in physical units (columns 1-4) or by production value (columns
5-8). Standard errors are clustered by municipality and reported in parentheses.

ity. The estimates are similar if soybeans are fully excluded from the analysis (columns 3-4
and 7-8), suggesting that the findings are not driven exclusively by the crop that would
become Brazil’s top export commodity. Finally, the differential effect of Embrapa expo-
sure on crops that were the explicit focus of Embrapa’s innovation remains if we further
include municipality-by-year fixed effects in the regression, thereby fully absorbing any
municipality-level trends (columns 2, 4, 6, and 8). Together, these findings build further
confidence that the effect of Embrapa exposure on agricultural productivity is not captur-
ing any spuriousmunicipality-level trend and is driven bydirected technological progress.

6 The Returns to Public R&D in Agriculture

This section examines the returns to public R&D investment associated with Embrapa.
To this end, we develop and estimate the minimal theoretical framework necessary to
assess the macroeconomic implications of Embrapa, while maintaining consistency with
the reduced-form results presented in Section 5. Our baseline estimates suggest that Em-
brapa increased Brazilian agricultural productivity by 110%, implying a benefit-cost ratio
of 17. The majority of these returns come from the geographic structure of Embrapa and
its spread across ecological conditions, rather than the overall scale of investment. We
focus on the essential components of the estimation, leaving details to Appendix B.
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6.1 Model and Estimation

Set-Up. We begin by describing a model of regional agricultural productivity and its
relationship with agricultural research. Let i ∈ I index the regions of Brazil. Each pair of
regions i, j ∈ I has a primitive ecological dissimilarity gij > 0. A subset of the regions,
Rt ⊆ I has an Embrapa research center at time t, and the center in each region j ∈ Rt

employs Njt scientists at time t. The agricultural productivity of a region i in period t is
given by

Ait = Āit

(∑
j∈Rt

[exp(−βgij)(Njt)
γ]θ
) 1

θ

(10)

where β measures how the effectiveness of research output scales with ecological simi-
larity, γ is the elasticity of research output to labor inputs, θ determines the elasticity of
substitution between research centers, and Āit is an exogenous shifter capturing all other
determinants of productivity, such as land quality and access to non-Embrapa research.

We can transform equation (10) into the following estimating equation, which is a gen-
eralization of the main empirical specification from Section 5:

logAit = −βgi̄ + γ logN̄ +
1

θ
log
(∑

j∈Rt

[
exp(−βgij)(Njt)

γ

exp(−βgi̄)(N̄)γ

]θ)
+ log Āit (11)

where ̄ indexes the municipality with the closest Embrapa center from i in period t.
This model for local agricultural productivity incorporates three key economic effects

of R&D, each of which is summarized by a different parameter.
First, the parameter β governs how quickly the effect of research output on productiv-

ity decays with ecological dissimilarity. This captures the inappropriateness or ecological
mismatch of agricultural technology. Unlike the other two parameters, β is not standard
in existingmodels of innovation and productivity, but it was the key focus of Embrapa and
of our analysis in Section 5. The first term of equation (11) captures the effect of ecological
similarity of the most ecologically proximate Embrapa center.

Second, the parameter γ governs how agricultural research output relates to the num-
ber of researchers: an x% increase in researchers in all locations raises productivity every-
where by γ × x%. This captures “scale effects” in R&D (e.g., Jones, 1995), which could be
important for determining the overall impact of Embrapa’s investment. Estimating γ will
also make it possible to determine the extent to which the impact of Embrapa was due to
greater overall R&D investment versus the specific geographic structure that spread R&D
investments across space. The second term of equation (11) captures the effect of the scale

36



of the most ecologically proximate research center.
Third, the parameter θ governs the degree of substitutability across research from dif-

ferent Embrapa centers. While our reduced form analysis only took into account the effect
of the most ecologically proximate research center, in practice there could be imperfect
substitutability between the agricultural products or techniques that different centers de-
velop. The third term of equation (11) captures the effect of all other Embrapa activities
taking place outside the most ecologically proximate center on local productivity.

Our estimating equation from Section 5—equation (7)—is obtained in the limit where
γ = 0 and θ → ∞. This case shuts down scale effects, eliminating the effect of the nearest
center’s scale, and makes centers’ research outputs perfect substitutes. In this case, our
earlier estimates recover the parameter β.

Estimation. We estimate the model’s three parameters (β, γ and θ) via nonlinear least
squares. Mapping from theory to the data, we measure Ait as the value of agricultural
production per hectare,Nit as expenditure on labor in each Embrapa center, and gij as the
ecological dissimilarity between each pair of municipalities (see Section 5.1). For estima-
tion, we transform Equation (11) into a long difference between a reference year t1 = 2006,
the end of a large period of expansion from Embrapa, and a pre-Embrapa period. This
mirrors our earlier long difference analysis in Section 5.2. Appendix B presents details of
our estimation procedure and robustness exercises.

Table 4 reports estimates of equation (11) using different methods. Column 1 presents
the OLS estimate of β, assuming γ = 1/θ = 0, consistent with our strategy in Section 5.
Column 2 shows the results from our non-linear least squares estimation. The coefficient
on β slightly increases, confirming the importance of ecological mismatch in mediating the
benefits from research even in this richer framework. Our estimate of γ = 0.090 implies
mild scale effects: a 1 percent increase in the total number of Embrapa researchers raises
agricultural productivity by 0.07 percent. To better assess the magnitude of our estimate
for γ, column 3 reports results froma constrained estimationwhere γ is set high enough for
Embrapa’s research alone to account for the entirety of Brazil’s agricultural productivity
growth between 1970 and 2010, estimated at 280% (Fuglie, 2015).12 This yields an estimate
of γ = 0.14; nonetheless, evenwith scale effects at this natural upper bound, there remains
a large and quantitatively stable effect of ecological mismatch.

12As a reference point, Jones (2002) calibrates a scale effect of γ = 1/3 in the US to reconcile aggregate TFP
growth with the observed growth of the R&D workforce.
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Table 4: Estimates of the Agricultural Productivity Function

Model Specification
(1) (2) (3)

Parameter OLS NLLS NLLS
β 0.820 0.934 0.941

[0.611; 1.030] [0.691; 1.177] [0.686; 1.196]
γ 0.090 0.143

[−0.014; 0.056] [−]
θ 7.494 6.212

[3.210; 11.778] [2.979; 9.444]
p-value (H0: equal to Col. (1)) 0.000 0.000
p-value (H0: equal to Col. (2)) 0.107

Notes: This table shows estimates of equation (11). 95% confidence intervals are reported in square brackets.
P-values are generated using the log-likelihood ratio tests. Column 3 restricts γ to be large enough so that
Embrapa’s research account for all the productivity growth in Brazil between 1975 and 2010.

6.2 Embrapa’s Productivity Effects and the Returns to Public R&D

We first use the model to evaluate the aggregate agricultural productivity gains from Em-
brapa. Specifically, we compare productivity in 2006 to a counterfactual in which public
agricultural R&D was held fixed at pre-Embrapa levels.13 We find that Embrapa induced
a 110% gain in average productivity (Figure 11a, first bar). To put this number in per-
spective, Fuglie (2015) estimates that Brazil’s aggregate agricultural productivity rose by
280% between 1970 and 2010, implying that Embrapa accounts for 39 percent of the total
productivity gains over this period.

A notable feature of our setting is we can benchmark our estimates of the value of
public R&D against data on its total cost. That is, we can compute a social return on pub-
lic R&D investment, an object on which there is relatively scant evidence in advanced
economies (e.g., Jones and Summers, 2020) and even scanter evidence in low- andmiddle-
income countries. Understanding the cost-effectiveness of R&D investments is essential to
determine whether policies like Embrapa are legitimate strategies to foster growth.

To do this, we construct annual series of costs and benefits, which we discount to their
present value as of 2006. To compute benefits, we convert the productivity gains attributed
to Embrapa into value-added gains in 2006. For years prior to 2006, we assume a phased-in

13We discipline this counterfactual using historical data on the structure of agricultural research under the
pre-existing DNPEA (Departamento Nacional de Pesquisa e Experimentação Agropecuária). These re-
search centers were in Belém (Pará), Cruz das Almas (Bahia), Sete Lagoas (Minas Gerais), Pelotas (Rio
Grande do Sul), and Manaus (Amazonas). We rescale our measurements for the size of these research
centers, taken between 1971 and 1973, to match the initial scale of Embrapa.
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Figure 11: Productivity Gains and Benefit-Cost Analysis of Embrapa

(a) Productivity Gains
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Notes: Panel (a) effect the impact of Embrapa’s research on aggregate agricultural productivity. Error bars
are 95 percent confidence intervals computed based on the delta method. Panel (b) shows the benefit-cost
ratio implied by the productivity gains presented in Panel (a) and data on the costs of research. P-values are
based on the null hypothesis of no difference between columns.

benefit structure: a linear increase in gains from 1975 until 2000 and a constant annual gain
thereafter, equal to the value-added gain in 2006. All pre-2006 benefits are discounted to
present value using a 7 percent social discount rate and post-2006 benefits are valued using
a perpetuity formula using a 5 percent rate.14 To compute the costs, we first discount all
expenditures prior to 2006 to their present value using the same 7 percent interest rate. We
then assume that maintaining Embrapa’s research at its 2006 level is necessary to sustain
the gains and apply the perpetuity formula to calculate the present value of all future
costs using a 5 percent discount rate. Finally, we compute the ratio of the present value of
benefits to the present value of costs.

Our baseline estimate for the benefit-to-cost ratio of Embrapa is 17 (Figure 11b, bar 1).15

This is somewhat larger than prior estimates for advanced economies: for example, Jones
and Summers (2020) report a “conservative estimate” of 5 for overall public R&D in the
US economy, though they note that there are many reasons that the true number could
be much larger. Griliches (1958) computes a benefit-cost ratio of 7 for research on hybrid
corn. One possibility is that returns to well-structured R&D in developing countries are

14These assumptions are consistent with Embrapa’s own reports, which use discount rates in the 4–7.7 per-
cent range (Embrapa, 2018, 2020), as well as World Bank estimates for Latin America (Lopez, 2008).

15These estimates also imply an internal rate of return of 25 (see Appendix B.4.)
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particularly high because of the relative absence of locally appropriate technology and the
high returns to developing it. Indeed, a handful of studies estimating the returns to R&D
in tropical agriculture obtain figures that are even larger than ours (Rosegrant et al., 2023).

There are several reasons that our estimates should be interpreted with caution; how-
ever, we believe that, if anything, our approach would lead us to understate the true re-
turns. First, we impose a slow benefit ramp-up, which is conservative relative to other
work arguing that benefits peak ten years after investment (Rosegrant et al., 2023). Second,
we make the conservative assumption that existing research spending needs to be held
constant in order to maintain existing gains. Third, while we measure all of Embrapa’s
costs, there are likely several components of Embrapa’s benefits that are not captured by
our empirical strategy, including the effect of new technology on weather resilience (i.e.,
lower production variance), food security, and agricultural productivity outside of Brazil
(see Lachaud and Bravo-Ureta, 2022, on international productivity spillovers from agricul-
tural R&D).Moreover, even our lower-bound benefit-cost ratio of tenwould be considered
high among development interventions (see, e.g., Copenhagen Consensus Center, 2004).16

6.3 Mechanisms: Research Scale vs. Geographic Scope

We next investigate the mechanisms underlying Embrapa’s returns. Embrapa increased
both the scale of agricultural R&D, by substantially increasing overall investment, and
its geographic scope, by establishing research centers in many different regions and eco-
logical zones. How much of the overall impact on agricultural productivity was due to
greater overall R&D investment versus the re-direction of R&D toward the development
of technology suited to Brazil’s varied ecological conditions?

To separately account for the roles of scale and scope, we simulate the effect of Embrapa
under different institutional structures. First, we consider a scenario in which Embrapa
opened only its headquarters in Brasília and invested all of its resources there. This holds
the scale of investment constant but reduces its geographic scope. This scenario reduces
the productivity gains from Embrapa to 70% and the benefit-cost ratio to 11, 37% lower
than our estimate under Embrapa’s true scope (Figures 11a and 11b, second bar). More-
over, the lower-bound benefit-cost ratio of 2.7 is no longer large and similar to existing
estimates of the multiplier effect from simple cash transfers (Egger et al., 2022). Thus,
there were large and cost-effective gains to spreading investment across many regions.

Brasília may be a particularly favorable place to scale up agricultural R&D because of
its ecological “centrality,” leading us to over-state the returns to scaling up research more
16In Appendix Figure C.6, we report alternative benefit-cost calculations under other plausible assumptions
for the ramp-up period of benefits, the maintenance cost after 2006, and the cost of capital.
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generally. To address this, we instead consider a scenario inwhich Embrapa invested all of
its resources in a single hub in the location of one of its other existing research centers. The
average of both the benefits and benefit-cost ratio across these scenarios are considerably
lower than those for the actual design and for the Brasília-only counterfactual (Figures
11a and 11b, third bar). These findings are consistent with large returns to Embrapa’s
geographic scope and limitations to scaling up agricultural R&D in any one location.

6.4 Implications for Policy Design

We conclude by summarizing two lessons for designing R&D programs that emerge from
our analysis.

The Benefits of Spreading Out. Our counterfactual analysis suggests that much of the
economic gains from public agricultural R&D in Brazil arose from its diffuse geographic
structure, spread across the regions and biomes of the country. This broad conclusion
contrasts with that of a separate literature that has studied the concentration of innovative
activities in “high-tech clusters” of the United States. For example, Moretti (2021) doc-
uments that local concentration of inventors in computer science, semiconductors, and
biology increases the productivity of marginal inventors, and suggests that further ag-
glomeration would increase total innovative output (see also Gruber and Johnson, 2019).

One key point of our study is that we document that the productivity effects of in-
novation is shaped by mismatch between the location for which technology is developed
and the location in which it is applied—in the language of the structural model, β > 0.
This force is present in previous work on agricultural technology (e.g., Griliches, 1957;
Moscona and Sastry, 2025). Other work suggests that similar forces are at play for med-
ical technology that addresses different diseases (Kremer and Glennerster, 2004; Hotez,
2021) and high-tech start-ups that cater to different markets (Lerner et al., 2024). A con-
ceptual take-away from our analysis is that gauging the extent of “mismatch effects” may
be crucial not only for assessments of whether R&D investments are worthwhile but also
for determining their ideal structure and design. We also show that Embrapa was able
to overcome the productivity disadvantage of conducting research outside of R&D “clus-
ters” (see Table 1)—understanding how this was accomplished in greater detail could be
an important input into the implementation of future R&D programs.

Heterogeneous Returns and Targeting. A related conclusion is that the returns to R&D
investments vary considerably across space. To illustrate this in our setting, Figure 12a
displays the productivity gains from constructing a single large research center each mu-
nicipality. Brasília—Embrapa’s true headquarters in Brazil’s central region—is located in
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Figure 12: Geographic Distribution of the Productivity Gains of an Embrapa Center

(a) Initial Aggregate Productivity Gain (b) Change in Aggregate Productivity Gain

Notes: Panel (a) shows the gains in aggregate agricultural productivity of opening one large Embrapa cen-
ter across all municipalities compared to a baseline with no centers. Panel (b) shows the difference in the
relative gains from opening one additional center when no centers exist versus all centers from 2006 exist.
Reg regions would generate a lower aggregate productivity gain relative to the baseline scenario and green
regions would generate a higher aggregate productivity gain relative to the baseline scenario.

the region that would maximize the gains from a single, large center (darkest green in the
map). This is driven by the fact that this region is ecologically close to many areas of the
country, and our analysis reveals that ecological mismatch mediates the effects of R&D
investments on productivity. Placing a single, large center in other parts of the country,
by contrast, could yield returns as low as 1-2 percent.

Moreover, since research centers are substitutes in our model (θ > 1), the best places
to target change over time. Figure 12b maps the change in aggregate productivity gains
between 1970 (when no centers exist) and 2006 from creating a single new center in each
municipality. As Embrapa spread to more remote parts of the country, there was a clear
decline over time in the gains from establishing a new center inmunicipalities far from the
center of Brazil (red and dark red in the map). Once a center is established in a particular
ecological zone, the additional returns to a center in an ecologically similar area becomes
much lower. These changing returns over time can be used to target new investments. In-
deed, one of the last newEmbrapa centers was established in 2012 in Sinop, amunicipality
in Western Brazil where returns to new research are highest (darkest green on the map).17

17An additional implication is that there has been a decline in over time potential productivity gains from
adding additional centers (see Appendix Figure C.7). Before Embrapa existed, adding a new center could
raise aggregate productivity by up to 60 percent; in contrast, a new center of the same size could only
increase aggregate productivity by 10 today. This could explain Embrapa’s greater focus in recent years
on alternative goals such as climate-damage mitigation and production resilience (Embrapa, 2025a).
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7 Conclusion

Global R&D investment is concentrated in a handful of high-income countries. Existing
work documents that frontier R&D is developed to match the specific needs and demands
of these high-income countries, limiting the productivity benefits of this technology else-
where (Kremer and Glennerster, 2004; Moscona and Sastry, 2025). Can targeted public
R&D in a developing country allow it to escape this technology mismatch trap?

To answer this question, we studyBrazil’s Embrapa (the Empresa Brasileira de Pesquisa
Agropecuária), perhaps the most prominent example of a publicly-funded R&D program
in a developing country, whichwas established in 1973 to spur the development of locally-
suitable agricultural science and technology. Combiningdetaileddata onEmbrapa’s struc-
ture and research costs with a novel dataset of the research and career trajectories of all
Brazilian agricultural scientists and nine rounds of Brazil’s census of agriculture, we inves-
tigate the impact of public R&D on research output and agricultural productivity growth.

We have threemain sets of findings. First, using granular data on Brazilian agricultural
research, we find that Embrapa shifted the focus of agricultural research toward Brazil’s
ecological conditions and main staple crops; moreover, Embrapa increased researchers’
productivity, especially in remote and resource scarce regions. Second, exploiting the stag-
gered expansion of Embrapa’s research centers and heterogeneous ecological similarity to
new centers across municipalities, we find that Embrapa substantially increased agricul-
tural productivity. These effects are driven by particularly pronounced yield increases for
the staple crops which were the focus of Embrapa’s research. Finally, combining these
estimates with a model and data on Embrapa’s cost structure, we find that Embrapa in-
creased Brazilian agricultural productivity by 110% with a benefit-cost ratio of 17. Coun-
terfactual analyses suggest that the geographic scope of Embrapa’s research efforts and
development of appropriate technology for Brazil’s varied ecological conditions was an
important mechanism. Together, these results suggest that investment in public R&D can
be an important component of development policy and catalyst for productivity growth.
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Appendix

A Data

In this appendix, we summarize additional details about measurement.

A.1 Agricultural Censuses

The Census interviews every farm in every municipality in intervals of five or ten years,
achieving near universal coverage (Klein and Luna, 2018) and making it an invaluable
source of information on agricultural output, land allocation, and input use. We assem-
bled data for the rounds of 1950, 1960, 1970, 1975, 1980, 1985, 1996, 2006 and 2017.

The censuses rounds of 1996, 2006 and 2018 are available online from the SIDRA sys-
tem. All other rounds were made available as scanned pdf files available in the digital
library of the Brazilian Institute of Geography and Statistics (IBGE). We digitized virtually
all the information from these earlier censuses.

While some prior work had relied on the extraction of select variables from a subset of
the census rounds, we are unaware of an existing complete digitization and harmonization
of this database. We exclude the 1920 and 1940 rounds because they were conducted long
before the founding of Embrapa and because there are more substantial issues with data
completion (i.e., an absence of information on land use) and methodological changes that
make it challenging to compare data across rounds.

We summarize the available information in each round of the agricultural census in
Appendix Table C.1.

A.2 Article Topic Classification

In our analysis of the direction of research (Sections 4.1, 4.2, and 4.3), we rely on a keyword
classification of article topics. To do this, we first process the titles of articles into lowercase
strings with no leading and trailing spaces and no accented characters. We then produce
keyword dictionaries for each topic. These are printed in full in Table A.1. We build the
dictionaries by first enumerating the English, Portuguese, and Spanish translation of the
term. We then enumerate common synonyms. For crops and pests, we also include scien-
tific names.
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Table A.1: Keywords for Topic Classification
Category Topic Keywords

Biomes

Cerrado cerrado, tropical savanna
Pantanal pantanal, tropical wetland
Amazonia amazon
Caatinga caatinga
Pampa pampa
Mata Atlantica atlantic forest, atlantic rainforest, mata atlantica, foret atlantique, selva

misionera, bosque atlantica, floresta atlantica

Crops

Wheat trigo, triticum aestivum, t. aestivum, triticum, wheat
Soy soja, glycine max, g. max, glycine, soy
Rice arroz, rice, oryza sativa, o. sativa, oryza
Beans feijao, feijoes, feijoeiro, phaseolus vulgaris, p. vulgaris, phaseolus,

common bean
Corn milho, maiz, maize, corn, zea mays, z. mays

Pests

Whiteflies whitefl, mosca branca, mosca blanca, mosca-branca, mosca-blanca,
moscas blancas, moscas, brancas, bemisia, b. tabaci

Fusarium fusarium ear blight, fusarium head blight, fusariose do trigo, fusarium
graminearum, f. graminearum

Boll Weevil boll weevil, anthonomus grandis, a. grandis, bicudo-do-algodoeiro,
bicudo do algodoeiro, grillo de la capsula del algodonero

Wheat Rust wheat rust, cereal rust, stem rust, ferrugen do colmo, ferrugem do
trigo, ferrugem-do-trigo, ferrugem do colmo, ferrugem-do-colmo,
polville de la cana, roya del tallo, roya del trigo, roya negra, (Wheat &
(rust, ferrugem, ferrugen))

Witches’ Broom moniliophthora perniciosa, m. perniciosa, crinipellis perniciosa,
witches’ broom, witches broom, escoba de bruja, vassoura de bruxa,
vassoura-de-bruxa

Coffee Berry
Borer

hypothenemus hampei, h. hampei, coffee berry borer, barrenador del
cafe, broca del cafe, broca del fruto del cafe, totaladro de las cerezas del
cafeto

Coffee Leaf Rust hemileia vastatrix, h. vastatrix, coffee leaf rust, ferrugem do cafeeiro,
ferrugem do cafe, roya del caf, coffee rust, (Coffee & (rust, ferrugem,
ferrugen))

Fall Armyworm spodoptera frugiperda, s. frugiperda, fall armyworm, lagarta do
cartucho, lagarta militar

Corn Earworm helicoverpa zea, h. zea, corn earworm, bollworm, lagarta da espiga,
broca grande do fruto, gusano bellotero del algodon

Soybean Rust phakopsora, p. pachyrhizi, p. meibomiae, soybean rust, soyabean rust,
roya de la soya, roya de la soja, ferrugem da soja, ferrugem asiatica,
(Soybean & (rust, ferrugem, ferrugen))

Soybean Cyst
Nematode

soybean cyst nematode, heterodera de la soja, nematodo de la soya,
nematoide de cisto da soja, cisto da soja

Notes: This table prints our keywords for classifying the topics of research articles in the analysis of Section
4. The second column prints the topics, arranged in three categories (biomes, crops, and pests/pathogens).
Before searching the keywords, we transform the titles to be lowercase strings with no accented characters.
In the keyword lists, commas denote an “or” condition. For three pests (wheat rust, coffee leaf rust, and
soybean rust), we include one compound rule that identifies articles that match the respective crop and any
of three synonyms for “rust.”
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Table A.2: Components of Ecological Similarity Index
Measure Original Unit Notes Source
Temperature ◦C Annual mean from

1981 to 2010
Willmott and Matsuura

Precipitation mm Annual mean from
1981 to 2010

Willmott and Matsuura

Growing season days Sufficiently warm and
moist days

FAO GAEZ

Elevation m Distance above sea level GTOPO30 Digital
Elevation Model

Ruggedness m2 Relative elevation to
neighboring grid cells

Riley et al. (1999) and
Nunn and Puga (2012)

Soil acidity pH in water to 250m SoilGrids and WoSIS
Clay content % mass to 250m SoilGrids and WoSIS
Silt content % mass to 250m SoilGrids and WoSIS
Coarse fragments % volume to 250m SoilGrids and WoSIS

Notes: This table describes the 9 geographic attributes used in the construction of ecological similarity (see
Section 5.1 andAppendixA.3). In our analysis, we summarize all of thesemeasures at the level ofmunicipal-
ities and convert them from their original units (identified in column 2) to z-score units acrossmunicipalities.
The “growing season” is defined as days in which temperature exceeds 5 ◦C and the sum of precipitation
and soil moisture exceeds 0.5 times potential evapotranspiration. The soil categories are defined by particle
sizes: “clay” is from 0 to 2 µm, “silt” is from 2 to 50 µm, and coarse fragments are over 2mm. The “Willmott
and Matsuura” data correspond to Matsuura and National Center for Atmospheric Research Staff (2023).
The WoSIS (World Soil Information Service) data are described in Batjes et al. (2017).

A.3 Geospatial Data and Ecological Similarity Index

In Section 5.1, we use an index of geospatial attributes to construct a measure of ecological
similarity between pairs of locations. We refer to this variable as Ecological Similarityij ,
defined for pairs of municipalities i, j ∈ I as

Ecological Similarityij = −
∑
x

|xi − xj|, (12)

where each x is a separate geographic attribute. Here, we describe the construction of this
index in more detail.

We construct the index using nine geospatial data sources, which are described in Ap-
pendix Table A.2. Three describe the climate: temperature, precipitation, and growing
season. Two describe topography: elevation and ruggedness. Four describe soil charac-
teristics: acidity and relative content of clay, silt, and coarse fragments.

To construct the index, we first measure each of the nine characteristics by taking spa-
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tial averages over each Brazilian municipality (i.e., Área Mínima Comparável, or AMC). We
let x̃i denote the value of a given characteristic in municipality i, expressed in its original
units. We next transform each characteristic into a z-score:

xi =
x̃i −mean(x̃i)

sd(x̃i)
(13)

where we take the mean and standard deviation across the municipalities. This expresses
each characteristic in a common unit. Finally, we sum the absolute differences of each
attribute to construct ecological similarity (equation (12)).

The form of our index, including the choice of the attributes and the choice of the `1

distance, is based on related prior work. Bazzi et al. (2016) use a related index of agro-
climatic similarity between agricultural regions of Indonesia to proxy for the transferabil-
ity of agricultural workers’ skills. Moscona and Sastry (2025) use a related index to study
the appropriateness of internationally transferred agricultural technology.

While our main analysis uses the composite ecological similarity index, we also in-
vestigate the sensitivity of our findings to individual components of the index. Appendix
Figure C.3 replicates our baseline estimates of equation (7) after dropping individual com-
ponents of the index. Our findings indicate that our results are not unduly quantitatively
sensitive to any specific component.
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B Structural Model

In Section 6, we briefly presented the structuralmodel and its estimation. In this appendix,
we provide a thorough description of the estimation procedure. To keep the section self-
contained, we repeat some of the equations from the main text.

B.1 Estimation of Agricultural Productivity Function

Our estimating equation is derived from equation (10)

Ait = Āit

(∑
j∈Rt

[exp(−βgij)(Njt)
γ]θ
) 1

θ

︸ ︷︷ ︸
≡EEit

(14)

where we define EEit, or “Embrapa Exposure,” as the second term. Taking logarithms,
and re-arranging terms, we obtain equation (11) from the main body of the paper:

logAit = −βgi̄ + γ logN̄ +
1

θ
log
(∑

j∈Rt

[
exp(−βgij)(Njt)

γ

exp(−βgi̄)(N̄)γ

]θ)
+ log Āit. (15)

We write the equation above in differences, between reference period T and initial period
0, which gives

logAiT − logAi0 = −βgi̄ + γ logN̄ +
1

θ
log
(∑

j∈RT

[
exp(−βgij)(NjT )

γ

exp(−βgi̄)(N̄)γ

]θ)
+ εi. (16)

Here, the residual term is εi ≡ log(ĀiT )−log(Āi0)−log(EEi0), and captures both the initial
exposure to Embrapa and changes in the exogenous productivity shifter. We estimate
this equation using non-linear least squares, including a constant term. We note that,
by taking the first difference, the specification absorbs any municipality-specific factors
that are constant over time—such as natural agroclimatic conditions—as well as period-
specific effects that are constant across municipalities, such as changes in national-level
prices.

B.2 Aggregate Productivity Gain

Using data on cost of researchersNiT for a reference period T , together with our estimates
of β, γ, and θ and our measurements of ecological similarity [gij]i,j∈I , we construct Em-
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brapa Exposure in period T :

EEiT =

(∑
j∈RT

[exp(−βgij)(NjT )
γ]θ
) 1

θ

,

we then recover the productivity shifter ĀiT by combining data on AiT with EEiT

ĀiT =
AiT

EEiT

We create our baseline productivity level for each municipality i, from which we evaluate
our counterfactuals, using data on the initial level of research activityNi0, productivity in
baseline 0 given a reference year T , based on the following expression

Ai0T = ĀiT

(∑
j∈R0

[exp(−βgij)(Nj0)
γ]θ .

) 1
θ

In counterfactuals, we specify a counterfactual level of research cost Nic, compute the
resulting exposure to EmbrapaEEic, and evaluate the aggregate agricultural productivity
gains from baseline year 0 to the counterfactual c, using a reference year T , based on

Â0Tc =

∑
i ĀiTEEic∑
i ĀiTEEi0

. (17)

All reported aggregate productivity gains are based on this equation, using 2006 as the
reference year and 1970 as our baseline.

B.3 Benefit-Cost Analysis

To compute the benefit, we assume that changes in aggregate value-added are propor-
tional to changes in aggregate productivity. We therefore compute baseline value-added
as:

V0T = V T

∑
i∈I ĀiTEEi0∑
i∈I ĀiTEEiT

where V T is national agricultural value-added, which we observe (in US dollars) using
data from the UN Food and Agriculture Organization (FAO).

We then compute the gains in US dollars associated with Â0Tc as

GV0Tc = Â0Tc − 1 (18)
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Using the gains in value added for the reference year, we assume a simple phase-in struc-
ture. Specifically, we assume that, between 1975 and 2000, the gains increase linearly,
reaching the full value by 2000. From 2000 onward, the gains remain constant at the level
observed in the reference year.

GV0tc =


GV0Tc

(2000− 1975)
if t ≥ 1975 and t ≤ 2000

GV0Tc if t ≥ 2000

(19)

We then compute the present value of all benefits using

PV BT =
T∑

t=1975

V0T ×GV0Tc

(1 + 0.07)T−t
+

V0T ×GV0Tc

0.05
(20)

where the first term brings past benefits to present value of reference year T at an interest
rate of 7 percent and discount future values after T at a discount rate of 5 percent. Note
that we assume that the benefits are repeated throughout the future.

The present value of the cost is simpler to compute. We have data on the costs of
research in local currency, adjusted by inflation. We convert these values into US dollars
given the exchange rate in the year of reference. We then compute

PV CT =
T∑

t=1975

RCt

(1 + 0.07)T−t
+

RCT

0.05
(21)

whereRCt is the total research cost of Embrapa in year t, including personnel and capital.
The benefit-cost ratio is then

BCT =
PV BT

PV CT

. (22)

B.4 Internal Rate of Return

We compute the internal rate of return as of 1974, at the beginning of the project. To do so,
we bring all the costs to present value using the same interest rates applied in the benefit
cost ratios.

PV C0 =
T∑

t=1975

RCt

(1 + 0.07)T−t
+

RCT

0.05× (1 + 0.07)T
(23)

We then compute the interest rate that would make the net present value of Embrapa
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equal to zero. The net present value is given by:

NPV0 =
∞∑
t=0

GV0Tc

(1 + r)t
− PV C0. (24)

And the IRR is the value of r that makes NPV0 = 0.
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C Additional Tables and Figures

Figure C.1: Example of a Lattes Profile

(a) Professional summary

(b) Articles

Notes: This figure shows an example of an individual researcher’s CV on Lattes. Panel (a) shows the pro-
fessional summary, which identifies the individual’s education (degrees, institutions, and thesis titles) and
employment spells, identified by years and job titles. Panel (b) shows the beginning of the profile’s listing
of publications, from which we observe the author(s), title, forum of publication, and year.
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Figure C.2: Effect of Embrapa onResearchDirection: Embrapa vs. non-Embrapa Research
(a) Biome Focus
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(b) Crop Focus
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(c) Pest and Pathogen Focus
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Notes: Each subfigure reports estimates of equation (3), showing the effect of the opening of new Embrapa
centers on the re-direction of research across biomes (a), crops (b), and pests and pathogens (c). In each
subfigure, the first bar reports the effect on total topic-specific research, the second reports the effect on
topic-specific research by Embrapa affiliates, and the third reports the effect on topic-specific research by
researchers unaffiliated with Embrapa. 95% confidence intervals are reported.
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Figure C.3: Effect of Embrapa Exposure on Productivity Dropping Index Components
(a) log(Production Value / Area)
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(c) log(Farm Value / Area)
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(d) log(Agricultural TFP, Pre Weights)
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Notes: Each subfigure shows the robustness of ourmain estimates of equation (7) under variant constructions
of Embrapa Exposure that exclude each indicated component of agro-climatic similarity (see Table A.2).
Each subfigure corresponds to a different productivity outcomevariable. The dots and error bars correspond
to estimates and 95% confidence intervals for each variant model, and the vertical green line corresponds to
the point estimate using the main index.
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Figure C.4: Heterogeneous Effects of Embrapa Exposure on Productivity by Baseline Pro-
ductivity and Farm Size
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Notes: This figure presents regression estimates of equation (7), augmented to include interaction terms be-
tween Embrapa Exposure and indicators for above versus below baseline agricultural productivity (columns
1-2) and indicators for above versus below baseline average farm size (columns 3-4). All specifications in-
clude municipality and year fixed effects, in addition to the logarithm of distance (in km.) to the nearest
Embrapa center times census-round fixed effects and state-by-census-round fixed effects. Standard errors
are clustered by municipality and 95% confidence intervals are reported.
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Figure C.5: Productivity Gains from Sequentially Opening Research Centers
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Notes: This figure illustrates the productivity gains from sequentially adding research centers, starting with
the largest and progressing to the smallest. The dotted gray line indicates the total gains from Embrapa
under the observed allocation. The blue bar represents the gains if remove any other center, the gray bar
the gains if all researchers from Embrapa are reallocated to the active centers, keep the relative size of the
active centers fixed.
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Figure C.6: Benefit-Cost Calculation Under Different Assumptions
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Notes: This figure reports the benefit–cost ratio under alternative assumptions about costs and benefits. The
first bar excludes Embrapa’s maintenance expenditures by setting all research costs to zero after the 2006
reference year and a shorter phase in period in which the full benefits are realized in 1985. The second bar
only excludes Embrapa’s maintenance expenditures. The third bar corresponds to our preferred specifica-
tion. The fourth bar raises the Cost of Capital (CoC) by 20 percent, so that each dollar invested in Embrapa
requires 1.20 in funding. The fifth bar assumes that the benefits of Embrapa’s research phase are null until
1985 and phase in linearly after then until 2000.
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Figure C.7: Productivity Gains of New Research Centers Before and After Embrapa

Notes: This figure displays the productivity gains from adding a large Embrapa center under two scenarios:
first, when no centers exist; and second, when all centers established by 2006 are already in place. In both
cases, the size of the new center is held constant.
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Table C.1: Digitization of the Agricultural Census of Brazil
Historical censuses (newly digitized) Modern censuses

1950 1960 1970 1975 1980 1985 1996 2006 2017
Farm value X X X X X X X X X
Land use X X X X X X X X X
Farming output per crop X X X M X X X X X
Use of land per crop X X X X X X X X X
Farm size distribution X X X X X X X X X
Livestock X X X X X X X X X
Tractors X X X X X X ø X X
Agricultural workers X X X M X X X X X

Notes: This table describes the data we collect from the Agricultural Census of Brazil. X: all reported tables
have been completely digitized; M: all available tables have been digitized, but there were missing pages in
the original documents; ø: not collected by the census or never made available.
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Table C.2: Dynamic Effects of Embrapa Affiliation on Researcher Productivity
Defn. of High v. Low Research: Agricultural Research College Graduate Share

ihs(Papers) Norm. Count ihs(Papers) Norm. Count
Embrapa x Low Research, t+2 0.034 0.017 0.034 0.006

(0.039) (0.100) (0.038) (0.094)
Embrapa x Low Research, t+1 0.022 0.020 0.027 0.029

(0.043) (0.111) (0.040) (0.102)
Embrapa x Low Research, t -0.005 -0.017 -0.002 -0.003

(0.046) (0.141) (0.042) (0.132)
Embrapa x Low Research, t–1 0.040 0.081 0.044 0.099

(0.037) (0.104) (0.035) (0.097)
Embrapa x Low Research, t–2 0.051* 0.102 0.051* 0.102

(0.029) (0.082) (0.029) (0.084)
Embrapa x Low Research, t–3 0.073*** 0.185** 0.059** 0.143**

(0.027) (0.074) (0.026) (0.070)

Embrapa x High Research, t+2 0.028 -0.051 0.022 -0.068
(0.029) (0.086) (0.030) (0.087)

Embrapa x High Research, t+1 0.012 -0.031 0.004 -0.049
(0.040) (0.113) (0.042) (0.122)

Embrapa x High Research, t -0.022 -0.040 -0.021 -0.045
(0.042) (0.119) (0.046) (0.137)

Embrapa x High Research, t–1 0.016 0.035 0.008 0.012
(0.036) (0.108) (0.040) (0.117)

Embrapa x High Research, t–2 0.024 0.013 0.026 0.012
(0.031) (0.087) (0.031) (0.088)

Embrapa x High Research, t–3 0.031 0.051 0.037 0.074
(0.026) (0.070) (0.029) (0.081)

Adj. R2 0.500 0.508 0.500 0.508
Observations 351089 351089 350672 350672
Year FE Y Y Y Y
AMC × Year FE Y Y Y Y
Researcher FE Y Y Y Y

Notes: This table reports estimates of regression 4, with the inverse hyperbolical sine of published papers
(columns 1 and 3) and normalized amount of papers (columns 2 and 4) as the dependent variable, as well
as two leads and three lags of the main independent variables. “Low Research” is defined as below the top
ten AMCs in terms of total agricultural research (columns 1-2) and the college graduate share (columns 3-4).
Standard errors clustered at the AMC level and reported in parentheses.
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Table C.3: Effects of Embrapa on Alternative Measures of Researcher Productivity

(a) Outcome is (asinh) Citation-Weighted Articles

(1) (2) (3) (4) (5) (6)

Embrapa 0.178*** 0.173***
(0.054) (0.058)

Embrapa x Low Research 0.269*** 0.257*** 0.249*** 0.242***
(0.054) (0.049) (0.053) (0.048)

Embrapa x High Research 0.097** 0.122** 0.109** 0.120**
(0.042) (0.048) (0.043) (0.047)

Low Research -0.075*** -0.033***
(0.011) (0.009)

Adj. R2 0.355 0.379 0.355 0.379 0.355 0.379

(b) Outcome is the Normalized Article Count
Embrapa 0.080 0.101

(0.071) (0.075)
Embrapa x Low Research 0.129*** 0.123*** 0.195*** 0.189***

(0.027) (0.027) (0.071) (0.066)
Embrapa x High Research 0.039 0.065** -0.009 0.031

(0.025) (0.026) (0.062) (0.066)
Low Research -0.038*** -0.020

(0.010) (0.016)
Adj. R2 0.430 0.455 0.428 0.454 0.430 0.455

(c) Outcome is an Article Indicator
Embrapa 0.068*** 0.068***

(0.011) (0.012)
Embrapa x Low Research 0.085*** 0.081*** 0.078*** 0.078***

(0.012) (0.012) (0.012) (0.012)
Embrapa x High Research 0.049*** 0.060*** 0.052*** 0.061***

(0.013) (0.011) (0.012) (0.011)
Low Research -0.023*** -0.013***

(0.006) (0.003)
Adj. R2 0.335 0.362 0.336 0.362 0.335 0.362

Observations 530672 519562 530672 519562 530377 519291
Heterogeneity - Previous Research College Degree
Year FE Y Y Y Y Y Y
Municipality × Year FE – Y – Y – Y
Researcher FE Y Y Y Y Y Y
Tenure FE Y Y Y Y Y Y

Notes: This table replicates the analysis of Table 1 using alternative outcomemeasures: the inverse hyperbolic
sine of citation-weighted articles (a), the count of articles winsorized at the 99th percentile of the researcher-
by-year data (b), and an indicator (0/1) for whether a researcher published any article. The regression
model is equation (4). Columns 1 and 2main regressor indicates whether the researcher works for Embrapa.
Columns 3 to 6 interact the Embrapa indicator with municipality research characteristics. Columns 3 and 4
indicates whether the municipality had a low or high previous agricultural research production. Columns
5 and 6 indicate whether the municipality had a low or high share of college graduates. All regressions
include Year, Researcher, and job tenure fixed effects. Columns 2, 4, and 6 include municipality-year fixed
effects. Standard errors clustered at the municipality level.
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Table C.4: Effects of Embrapa Exposure on Other Measures of Productivity
(1) (2) (3) (4) (5) (6)

Panel A: Outcome is log(Crop Yield)
Embrapa Exposure 1.373*** 1.595*** 1.519*** 1.502*** 1.366*** 1.262***

(0.119) (0.130) (0.172) (0.130) (0.132) (0.140)
13093 12895 8432 12892 12892 12895
0.614 0.615 0.635 0.623 0.629 0.743

Panel B: Outcome is log(Farm Value / Farm Area)
Embrapa Exposure 0.383*** 0.480*** 0.594*** 0.470*** 0.410*** 0.341***

(0.072) (0.077) (0.110) (0.075) (0.073) (0.083)
13134 12936 8444 12930 12930 12936
0.964 0.964 0.964 0.965 0.965 0.968

Panel C: Outcome is log(Ag. TFP, Pre Weights)
Embrapa Exposure 0.457*** 0.544*** 0.592*** 0.552*** 0.489*** 0.476***

(0.072) (0.075) (0.099) (0.074) (0.074) (0.079)
12237 12044 7888 12041 12041 12044
0.984 0.984 0.985 0.984 0.985 0.986

Panel D: Outcome is log(Ag. TFP, Post Weights)
Embrapa Exposure 0.268*** 0.205** 0.125 0.218*** 0.183** 0.260***

(0.077) (0.081) (0.108) (0.079) (0.080) (0.082)
12237 12044 7888 12041 12041 12044
0.984 0.984 0.985 0.984 0.985 0.986

Municipality FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
log(Distance to Embrapa) x Round FE - Y Y Y Y Y
Drop if < 100km from Embrapa - - Y - - -
Drop if neighbor to Embrapa - - Y - - -
log(Initial Prod.) x Round FE - - - Y Y -
log(Initial Pop) x Round FE - - - - Y -
State x Round FE - - - - - Y

Notes: The unit of observation is a municipality-census-round pair, where municipalities are harmonized to
minimal consistent border units (IBGE, 2011). The regression model is equation (7). The outcome variables
are: log of average yields of major crops weighted by 1970 prices (Panel A; see main text for details); log
of agricultural land value per farm area (Panel B); and log of total factor productivity, based on farm area,
labor use, intermediates use, and mechanical inputs (Panels C and D). For calculating agricultural TFP, we
use a constant-returns-to-scale, Cobb-Douglas production function with weights reported in Fuglie (2015)
(Table A.2), based on calculations in the Brazilian agricultural census corresponding to the 1960s (Panel
C) and 2010s (Panel D). The control variables included are: logarithm of distance (in km.) to the nearest
Embrapa center times census-round fixed effects; log of production value per farm area in 1970 interacted
with census-round fixed effects; log of population in 1970 interacted with census-round fixed effects; and
state by census-round fixed effects. In column 3, we drop municipalities that are ever less than 100 km from
an Embrapa center or neighbor a municipality with an Embrapa center. Standard errors are clustered at the
municipality level.
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Table C.5: Embrapa Exposure Increases Productivity Controlling for Expected Value of
Exposure Treatment

(1) (2) (3) (4) (5) (6)
Embrapa Exposure 0.585*** 0.683*** 1.063*** 0.726*** 0.713*** 0.483***

(0.152) (0.165) (0.246) (0.166) (0.166) (0.163)
18386 18109 11821 18101 18101 18109
0.954 0.954 0.945 0.955 0.955 0.976

Municipality FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
log(Distance to Embrapa) x Round FE - Y Y Y Y Y
Drop if < 100km from Embrapa - - Y - - -
Drop if neighbor to Embrapa - - Y - - -
log(Initial Prod.) x Round FE - - - Y Y -
log(Initial Pop.) x Round FE - - - - Y -
State x Round FE - - - - - Y
Expected Treatment Y Y Y Y Y Y

Notes: The unit of observation is a municipality-census-round pair, where municipalities are harmonized
to minimal consistent border units (IBGE, 2011). The regression model is equation (7). All specifications
include a control for the expected value of the treatment variable across simulations that fix the locations
of Embrapa’s centers but vary their timing, following the logic of Borusyak and Hull (2023). The outcome
variable is the log of production value per farm area. The control variables included are: distance (in km.) to
the nearest Embrapa center times census-round fixed effects; log of production value per farm area in 1970
interacted with census-round fixed effects; log of population in 1970 interacted with census-round fixed
effects; and state by census-round fixed effects. In column 3, we drop municipalities that are ever less than
100 km from an Embrapa center or neighbor a municipality with an Embrapa center. Standard errors are
clustered at the municipality level.

Table C.6: The Effects of Embrapa on Farm Size Inequality
Outcome is:

Log of Avg. Farm Size Farmland Gini Index
(1) (2) (3) (4)

Embrapa Exposure -0.090 0.038 -0.050∗∗∗ -0.041∗∗∗
(0.059) (0.067) (0.010) (0.011)

Observations 18399 18121 17565 17293
R2 0.894 0.907 0.761 0.783
Municipality FE Y Y Y Y
Year FE Y Y Y Y
log(Distance to Embrapa) x Round FE - Y - Y
State x Round FE - Y - Y

Notes: The unit of observation is a municipality-census-round pair, where municipalities are harmonized to
minimal consistent border units (IBGE, 2011). The regression model is equation (7). The outcome variables
are the logarithm of average farm size and the Gini index of the farm size distribution. Standard errors are
clustered at the municipality level.
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Table C.7: Embrapa Exposure Increases Agricultural Productivity
(1) (2) (3) (4) (5) (6)

Panel A: Conley Standard Errors
Embrapa Exposure 0.730*** 0.825*** 0.985*** 0.844*** 0.819*** 0.599***

(0.186) (0.199) (0.278) (0.194) (0.183) (0.128)
Observations 18385 18108 11821 18101 18101 18108

Panel B: State-Level Clustered Standard Errors
Embrapa Exposure 0.730*** 0.825*** 0.985*** 0.844*** 0.819*** 0.599***

(0.195) (0.205) (0.305) (0.197) (0.196) (0.135)
Observations 18386 18109 11821 18101 18101 18109
Municipality FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
log(Distance to Embrapa) x Round FE - Y Y Y Y Y
Drop if < 100km from Embrapa - - Y - - -
Drop if neighbor to Embrapa - - Y - - -
log(Initial Prod.) x Round FE - - - Y Y -
log(Initial Pop.) x Round FE - - - - Y -
State x Round FE - - - - - Y

Notes: The unit of observation is a municipality-census-round pair, where municipalities are harmonized to
minimal consistent border units (IBGE, 2011). The regressionmodel is equation (7). The outcome variable is
the log of production value per farm area. In Panel A, standard errors are computed using the spatial HAC
estimator of Conley (1999), allowing for spatial correlation within 250 km and serial correlation over two
time periods. In Panel B, the standard errors are clustered at the state level. The control variables included
are: distance (in km.) to the nearest Embrapa center times census-round fixed effects; log of production
value per farm area in 1970 interacted with census-round fixed effects; log of population in 1970 interacted
with census-round fixed effects; and state by census-round fixed effects. In column 3, we dropmunicipalities
that are ever less than 100 km from an Embrapa center or neighbor a municipality with an Embrapa center.
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