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Abstract

Many studies use panel data to implement a regional-exposure design, interacting

aggregate shocks with heterogeneous exposures. We show how unobserved aggregate

shocks complicate inference in this setting and induce substantial under-coverage when

clustering by region. We suggest two-way clustering, potentially with an autocorrela-

tion correction, and randomization inference as solutions, and develop a feasible op-

timal instrument to improve efficiency. In an application to estimating regional fiscal

multipliers, valid 95% confidence intervals cannot reject near-zero multipliers, although

90% intervals are informative. The feasible optimal instrument doubles power. Our

results suggest that the precision promised by regional data may disappear with correct

inference.
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1 Introduction

One of the most popular research designs in economics exploits locations’ heterogeneous ex-

posure to aggregate shocks to measure the local effects of those shocks. Concretely, consider

a setting with time periods indexed by t, regions indexed by i, an aggregate shock vector St,

and region-specific exposure vectors ηi. In the regional-exposure design, researchers construct

an instrument Zit = η′iSt and use it to estimate how an endogenous variable (Xit) affects

an outcome (Yit) in a linear panel-data model.1 This empirical strategy is ubiquitous—for

example, it has been used to estimate the regional fiscal multiplier (Nakamura and Steinsson,

2014), the inverse labor supply elasticity (Bartik, 1991), the effects of falling home prices

on employment (Mian and Sufi, 2014), the effects of import competition from China (Autor

et al., 2013) and immigration (Card, 2001) on local labor markets, and the effects of foreign

aid (Nunn and Qian, 2014) and commodity price shocks (Dube and Vargas, 2013) on conflict.

Literatures across fields, from macroeconomics to labor to political economy, rely on results

from this research design.

Studies using the regional-exposure design often construct standard errors clustered by

region. This approach to inference presumes that regression model residuals are uncorrelated

across regions. But when regions are heterogeneously affected by aggregate shocks, the as-

sumption of uncorrelated residuals across regions is unlikely to hold. Moreover, practitioners

are often unclear about what assumptions underlie their identification strategy.

This paper studies how identification and inference in regional-exposure designs is affected

by unobserved aggregate shocks. We show that clustering by region substantially understates

true uncertainty both in theory and in practice. In a placebo test based on the study of

Nakamura and Steinsson (2014), which estimates the regional fiscal multiplier in an annual

panel of US states, a state-clustered 5% test falsely rejects the null more than 25% of the

time. We provide alternative standard errors that are robust to cross-regional correlation as

well as a randomization inference approach that provides exact coverage in finite samples.

Since true statistical uncertainty is often high in these settings, we also develop a feasible

optimal instrument that reweights data to improve efficiency in light of correlated residuals

across regions. In our application, this new estimator more than doubles statistical power.

Our results highlight the importance of accounting for the correlation of residuals across

regions in regional-exposure settings.

Framework. We use the idea of an approximate factor structure to the residual to capture

the notion that the residual contains aggregate shocks that have heterogeneous effects across

regions. Under this structure, the residual contains a factor component, reflecting hetero-

1This design takes many names in the literature, including “shift-share” and “difference-in-differences.”
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geneous regional loadings of an aggregate shock, and an idiosyncratic component. More

formally, we write the residual as uit = λ′
iFt + εit, where λi is the unobserved factor loading,

Ft is the vector of unobserved factors, and εit is the idiosyncratic component.

We use the factor structure to clarify that identification relies on as-good-as-random

assignment of either the aggregate shock or the regional exposures. Given the structure of

the instrument and the residual, there are two leading sufficient conditions for exogeneity: (i)

the aggregate shock, St, is orthogonal to the factor shock, Ft, or (ii) the regional exposure, ηi,

is orthogonal to the unobserved factor loading, λi. We view this latter possibility as unlikely

because it is easily contradicted by the data: the regional exposure is typically strongly

correlated with several other important regional variables, which themselves may be factor

loadings. Practitioners thus need to argue why the shocks are quasi-randomly assigned.

We next show that the validity of clustering by region depends critically on the source of

identification. If identification were to come from as-good-as-random assignment of shares,

then clustering by region would yield valid confidence intervals, although we view this as

unlikely in practice. Otherwise, the standard practice of clustering by region will typically

yield invalid confidence intervals. Intuitively, two regions with similar unobserved factor

loadings, λi, will face common shocks, Ft. For example, Boston and San Francisco both have

a large concentration of educated technology workers, and are therefore exposed to aggregate

shocks to the “high-tech” sector. As a result, they may have correlated residuals. If ηi, the

observed exposure to the aggregate shock, is correlated with the factor loadings, then two

regions with similar exposures to the observed shock will have correlated residuals. This

invalidates the typical approach of clustering by region.

Proposed Solutions. We next show how to construct valid confidence intervals using

methods that are robust to correlated shocks across regions.

We first suggest more robust clustered standard errors. If the unobserved factors are

uncorrelated across time, then two-way clustering is valid. If the unobserved factors are

correlated across time, but that correlation dies out asymptotically, researchers can use the

method of Thompson (2011) that combines two-way clustering with a heteroskedasticity

and autocorrelation correction à la Driscoll and Kraay (1998). Crucially, both methods are

“identification agnostic”: they are valid under identification from either shocks or shares.

We next introduce a randomization inference approach. In randomization inference, we

hold the residuals fixed and instead consider alternative draws of the shocks, St. Because

this method makes no assumptions about the residual, it can accommodate an arbitrary

correlation structure. Randomization inference instead requires specification of the shock

process. We can then simulate the exact distribution of the test statistic under the null, and

thus construct confidence intervals that have exact coverage even in finite samples.
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These methods often reveal low statistical power once coverage is corrected by accounting

for the residuals’ cross-regional correlation. We thus also propose a method to construct a

feasible optimal instrument, in the spirit of Chamberlain (1987, 1992) and Borusyak and Hull

(2021a). The optimal instrument reweights the original instrument with the residuals’ inverse

covariance matrix. Our feasible analog models this covariance via the factor structure. We

show how to estimate this structure via principal components analysis and provide a method

to select tuning parameters to maximize power while controlling size distortions.

Application: Regional Fiscal Multipliers. We show that these issues are quantita-

tively important in an application to the estimation of regional fiscal multipliers by Naka-

mura and Steinsson (2014). To estimate the regional fiscal multiplier, these authors construct

a regional-exposure instrument by interacting the growth in national defense procurement

spending with individual states’ exposure to that spending. We first show that there is a

factor structure to the residual: the first two principal components explain over 60% of the

variance. To study the performance of inference strategies in practice, we conduct a placebo

simulation with fake spending shocks. Consistent with our results, we find that conventional

tests at the 5% level based on clustering by state falsely reject the null more than 25% of

the time. More robust clustering (two-way clustering or two-way HAC) gives substantially

better coverage. Our randomization inference procedure, by construction, gives exact size.

In the data, valid confidence intervals cannot rule out low values of the regional fiscal

multiplier with high precision. At the 5% level, in our preferred specification, randomization

inference cannot rule out fiscal multipliers as low as 0.1 and robust confidence intervals

cannot rule out 0. Both methods provide evidence for a multiplier greater than 0.46 at the

10% level and greater than 1 at the 32% level.

Implementing the feasible optimal instrument substantially improves power. We find

in a power simulation that a test based on the optimal instrument is more than twice as

likely to correctly reject the null of a zero multiplier against a calibrated alternative in

which the multiplier is 1.5, compared to a test based on the original IV. In principle, the

optimal instrument can provide a much sharper estimate of the regional fiscal multiplier. In

practice, the optimal instrument produces a substantially lower point estimate compared to

the original IV strategy, and so we are still unable to reject multipliers near zero.

Our results contrast with those of the original paper, which conducts asymptotic inference

clustered by state and reports that 95% confidence intervals rule out multipliers below 0.6.

Interpreting these results via a model, the authors argue that the data are more consistent

with a New Keynesian model than with a “plain-vanilla Neoclassical model.” Our analysis

suggests that the data favor the New Keynesian model, but with considerably less precision

than state-clustered standard errors would suggest.
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Three Recommendations for Practice. First, we caution against clustering standard

errors by region. This can lead to severe distortions in inference in the likely case that

identification comes from aggregate shocks and regions are affected by other unobserved

common shocks. We demonstrate severe under-coverage in our empirical example.

Second, for valid inference, we recommend two options. Researchers can use valid clus-

tering methods, such as two-way clustering or two-way HAC. Alternatively, researchers can

use randomization inference to obtain exact finite-sample coverage at the cost of needing to

model the data-generating process for shocks.

Third, to improve precision, we suggest a feasible optimal instrument. As we showed

in the application, this method can significantly improve statistical power. Implementing

this method requires application-specific reasoning about the relevant null and alternative

hypotheses. In practice, it may be most useful in settings in which researchers have informed

priors over the parameters of interest, such as the fiscal multipliers setting.

Related Literature. Our work relates to a growing literature on inference and estimator

design in regional-exposure settings. One strand of the literature focuses on inference using

“shift-share” instruments. Goldsmith-Pinkham et al. (2020) show that shift-share designs are

equivalent to using the shares as instruments, under a particular GMM weighting matrix.

Using this insight, they show how shift-share designs can be identified using as-good-as-

random assignment of shares (identification from shares). Adão et al. (2019) and Borusyak

et al. (2022) explore an alternative identifying assumptions based on as-good-as-random

assignment of shocks (identification from shocks). They show that correct standard errors

must account for the cross-regional correlations induced by common shocks that affect regions

with similar industrial composition. They provide alternative methods to construct standard

errors that are consistent as the number of sectors, K, goes to infinity. In panel settings,

both papers show that extensions of their estimators will still be consistent as K → ∞. For

cases with fixed K, Borusyak et al. (2022) show consistency of the IV estimator.

By contrast, we focus on cases with fixed K and large T , and we will study an application

with K = 1. We provide tools for valid inference in this setting. Moreover, whereas the shift-

share literature has emphasized the notion that one must take an a priori stand on whether

identification comes from shocks or shares, before deciding how to do inference, we will show

that two-way clustered and two-way HAC standard errors are valid regardless of whether

identification comes from shocks or shares.

Our focus on randomization inference and efficient estimation as useful tools in settings

with non-random exposure to aggregate shocks connects with, respectively, Borusyak and

Hull (2021b) and Borusyak and Hull (2021a). We use the idea of a factor structure to clarify

the value of these tools. Moreover, our implementation of the feasible optimal instrument
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focuses on reweighting the data to account for cross-observation covariance in the residual,

an issue on which Borusyak and Hull (2021a) do not focus.

Our focus on more efficient estimators in this setting relates to Arkhangelsky and Ko-

rovkin (2023). These authors also study regional-exposure settings in which identification

comes from aggregate shocks and observe that a critical confounding force is unobserved

aggregate shocks with heterogeneous exposure. They propose a split-sample estimator that

minimizes the effects of these shocks to improve efficiency, inspired by the synthetic con-

trols literature (Abadie and Gardeazabal, 2003; Abadie et al., 2010). We, by contrast,

focus more closely on inference issues with the standard IV estimator and also propose a

randomization inference approach. The new estimator that we propose is inspired by the

optimal-instrument literature (Chamberlain, 1987, 1992; Borusyak and Hull, 2021a). We

view our results as highly complementary to theirs. Together, they comprise an improved

toolkit for estimation and inference in the regional-exposure setting.

Our fiscal-multipliers application relates to a growing literature on estimating cross-

regional spending multipliers (reviewed by Chodorow-Reich, 2019) and, more broadly, con-

necting macroeconomic theory to econometric practice in similar settings (e.g., Chodorow-

Reich, 2020; Guren et al., 2021). Most prior work in this area has focused on the economic

interpretation of estimates. Our focus is instead on accurately reporting the precision of

regional estimates and improving their efficiency, holding fixed their interpretation. Insofar

as our results suggest that regional multiplier estimates are relatively imprecise, our results

further highlight the importance of cross-study meta-analysis (e.g., as in Chodorow-Reich,

2019) for obtaining reliable estimates.

Finally, our analysis fits into a literature that gives practical guidance to researchers about

selecting an appropriate level at which to cluster standard errors (e.g., Bertrand et al., 2004;

MacKinnon et al., 2022; Abadie et al., 2023). Compared to these general analyses, our

analysis uses a plausible economic structure, the regional factor structure, to propose and

evaluate variance estimators in our setting.

Outline. Section 2 introduces the model with a residual factor structure and highlights

identification and inference issues that arise. Section 3 proposes econometric solutions. Sec-

tion 4 studies an application to estimating regional fiscal multipliers. Section 5 concludes.

2 Model and Econometric Issues

We first formally describe the regional-exposure design, which uses the interaction of ob-

served aggregate shocks with observed heterogeneous regional exposures as an instrument
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to estimate the relationship between an endogenous regressor and an outcome. To capture

the possibility that other, unobserved shocks also have regionally heterogeneous effects on

the outcome, we assume that the residual of the structural equation has an approximate

factor structure. Under this structure, we clarify the assumptions under which the model

is identified and the assumptions under which standard econometric practice of clustering

standard errors by region yields correct inference. We argue that, in most applications, re-

gional exposures are correlated with exposures to other, unobserved shocks, while aggregate

shocks may be as-good-as-randomly assigned. In this case, clustering by region is invalid.

2.1 Set-up: The Regional-Exposure Model

There is a set of regions i ∈ {1, . . . , N} and a set of time periods t ∈ {1, . . . , T}.2 In

each period there is a vector-valued aggregate shock St ∈ RK , for K ≥ 1. Each region

has an exposure ηi ∈ RK to each dimension of the shock. We define the regional-exposure

instrument

Zit = η′iSt (1)

There is an endogenous outcome Yit ∈ R and an endogenous regressor Xit ∈ R.
We study the two-equation instrumental-variables model

Yit = αt + γi + β ·Xit + uit (2)

Xit = ωt + ζi + π · Zit + eit (3)

We refer to these equations, respectively, as the “structural equation” and the “first-stage

equation.” The parameter of interest is β ∈ R, the marginal effect of Xit on Yit. The

parameter π ∈ R is the first-stage coefficient and (αt, ωt)
T
t=1 and (γi, ζi)

N
i=1 are fixed effects.

The variables uit and eit are defined as residuals, which have zero mean in each time period

and in each region. We also define variables X̃it, Ỹit, Z̃it, ũit, and ẽit as the double-demeaned

counterparts to the original variables.3 For simplicity of exposition, we assume that Xit,

Yit, and Zit have zero mean across regions and time-periods and that the econometrician

observes a balanced panel of these variables. For technical simplicity, we assume that E[Xα
it],

E[Y α
it ], and E[Zα

it] exist and are finite for all (i, t) and for all α > 0.4

2Although most applications of the regional-exposure instrument rely on regional data, our results could
also be applied in settings with other types of cross-sectional units, such as firms, households, or individuals.

3That is, for each variable W ∈ {X,Y, Z, u, e}, W̃it := Wit − W̄i − W̄t + W̄ , where W̄ denotes the sample
average, and W̄i, W̄t denote the within-region and within-time-period sample averages respectively.

4Note that this immediately implies the existence and finiteness of any and all “cross-variable” moments
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To illustrate this set-up, we describe Nakamura and Steinsson (2014)’s study of regional

fiscal multipliers in our language. In their setting, β is the regional fiscal multiplier; Yit is

the two-year growth rate in state GDP per capita; and Xit is the two-year change in local

military procurement spending per capita, divided by the two-year lagged state GDP. In

defining the instrument Zit = ηiSt, St is national military procurement spending growth and

ηi is military procurement spending as a share of state GDP at the start of the sample.

2.2 The Residual Factor Structure

We assume that the residual uit of Equation 2 has an approximate factor structure. To

capture this, we define a factor shock vector Ft ∈ RJ , with J ≥ 1, a collection of factor

loadings λi ∈ RJ for each region i, and an idiosyncratic component εit which is independent

from λi and Ft, and has zero mean in each time period and in each region. We define λi and

Ft to each have mean zero. We write uit as

uit = λ′
iFt + εit (4)

We introduce the approximate factor structure because it parsimoniously captures the

notion that different regions may comove in response to aggregate conditions. For example,

regions with a similar industrial mix may comove in response to certain trade shocks, certain

regions may be more sensitive to fiscal and monetary policy, or urban areas may comove as

the returns to agglomeration rise or fall.

Moreover, assuming a residual factor structure is arguably the only way to be internally

consistent with constructing a regional-exposure instrument. If we are to take seriously

the various studies relying on the interaction between observed shocks and exposures as

part of their research design, then we must believe that the residual contains the many

such regionally heterogeneous shocks studied in other papers. If we believe Nakamura and

Steinsson (2014), who find regionally heterogeneous effects of national military procurement

spending on output through its effect on local defense procurement, and we believe Autor

et al. (2013), who find regionally heterogeneous effects of rising trade with China, then the

regional-exposure instrument of one study is in the residual of the other, and vice-versa.

Although the approximate factor structure is more flexible than the typical assumption

of i.i.d. errors (or errors that are independent across regions), it is not entirely unrestrictive

for the covariance of the error term across regions. However, our proposed solutions will

typically not rely on the factor structure: the confidence intervals we recommend will be

of the form E[W a
itW

b
jsW

c
krW

d
lq], for W ∈ {X,Y, Z}, (a, b, c, d) ≥ 0, and indices (i, j, k, l) ∈ {1, . . . N} and

(t, s, r, q) ∈ {1, . . . , T}, due to Hölder’s inequality.
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robust to a broader set of covariance structures in the residual, and our improved estimator

will still offer efficiency improvements even if the residual does not truly have an approximate

factor structure.

2.3 Identification: “From Shares” or “From Shocks”

As a prelude to our analysis, we state sufficient conditions under which an instrumental

variables strategy with Zit identifies the structural parameter β in Equations 2 and 3. This

helps separate two logical paths to identification, one via the assignment of exposures and

the other via the assignment of shocks.

To do this, we will maintain two assumptions for the remainder of the analysis. The

first assumption is that the cross-sectional variables are independent from the time series

variables.

Assumption 1. (ηi, λi) ⊥⊥ (St, Ft)

In essence, the properties of the regions that are drawn cannot affect the time series

shocks, and vice-versa. This assumption might be violated, for example, if a financial crisis

will only occur if certain regions are very indebted. The second assumption is that the

idiosyncratic component of the residual is uncorrelated with the instrument.

Assumption 2. E [Zitεit] = 0.

This is without loss of generality. If the idiosyncratic component of the residual were

correlated with the instrument, then it could be decomposed into the projection of εit onto

Zit := η′iSt and the residual of that projection, which would be uncorrelated with Zit. The

projection of εit onto Zit would have a factor structure by construction. Thus, any component

of the residual which is correlated with the regressor can be represented as having a factor

structure. Note that Assumption 2 does not rule out the possibility that εit has a factor

structure; it simply requires that εit is uncorrelated with Zit.

We next use these assumptions to unpack the exogeneity condition E [Zituit] = 0. In

particular, we first use Equations 1 and 4 to write

E [Zituit] = E [η′iSt (λ
′
iFt + εit)] = E [η′iSt · λ′

iFt + η′iSt · εit] (5)

By Assumption 2, the second term is zero. We next manipulate the first term to write
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E [Zituit] = E [η′iSt · λ′
iFt]

= E [S ′
t(ηiλ

′
i)Ft]

= tr (E [S ′
t(ηiλ

′
i)Ft])

= tr (E [(ηiλ
′
i)(FtS

′
t)]) = tr (E [ηiλ

′
i]E [FtS

′
t])

(6)

where tr denotes the trace of a matrix and, in the last line, we use the cyclic property and

Assumption 1. Observe that E [ηiλ
′
i] is a K × J matrix and E [FtS

′
t] is a J ×K matrix, so

the trace is over a K ×K matrix.

Using this simplification, we argue there are two primary sufficient conditions for the

identification condition E [Zituit] = 0. We state each below.5

Condition 1 (Identification from Shares). The regional exposures are uncorrelated with the

factor loadings, or E[ηiλ′
i] = 0.

Condition 2 (Identification from Shocks). The aggregate shocks are uncorrelated with the

factor shocks, or E[FtS
′
t] = 0.

The first condition is natural if the exposures, ηi, are as-good-as-randomly assigned. We

refer to this condition as identification from shares, reflecting its connection to the literature

on shift-share instruments. In the shift-share setting, ηi is a vector of industrial employment

shares, and this condition is equivalent to assuming that the industry shares are as-good-as-

randomly assigned. In the shift-share literature, this is the route to identification assumed

by Goldsmith-Pinkham et al. (2020).

The second condition is natural if we assume that the shocks, St, are as-good-as-randomly

assigned. In the shift-share literature, this is the route to identification assumed by Adão

et al. (2019) and Borusyak et al. (2022).

Of these two paths to identification, we view identification from shocks as more plausible.

In typical applications, it is easy to show that the exposures, ηi, are correlated with other

variables (these variables themselves being plausible potential factor loadings, λi), and thus

are clearly not as-good-as-randomly assigned. Of course, the fact that identification from

shares is dubious does not imply that identification from shocks is necessarily any more

plausible. Regardless, we believe that if either of these identification approaches works, it is

likely to be identification from shocks.

We moreover view these two sufficient conditions as the main routes to identification, since

the others that are possible in principle are harder to justify economically. Mathematically,

5We have normalized ηi and St to have mean zero; thus each condition is described as uncorrelatedness.
This is without loss of generality: η′iE[St] and E[η′i]St are absorbed by fixed effects. Borusyak et al. (2022)
note that this would not suffice if exposures varied over time: η′itE[St] is not absorbed by a fixed effect.
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there exist many matrices E [ηiλ
′
i] = Q and E [FtS

′
t] = R such that tr(QR) = 0, but neither

Q = 0 (Condition 1) nor R = 0 (Condition 2). For instance, we could also mix-and-match

conditions (e.g. ηi1 ⊥ λi1 and Si2 ⊥ Fi2). But this is unappealing in practice, since it

requires a just-so combination of orthogonality conditions. An especially unappealing path

to identification would be to assume that the individual bias terms E
[
ηki S

k
t λ

h
i F

h
t

]
do not

equal zero, but that they happen to cancel out, so that their sum is zero. This would require

an extraordinary coincidence.

Both identification from shares and identification from shocks are sufficient, when com-

bined with appropriate conditions on dependence and second moments, for the IV estimate

to converge in probability to the true β. More specifically, the former relies on a weak law

of large numbers in the many-regions limit, and the latter relies on a weak law of large

numbers in the many-time-periods limit. We state this formally below. The proof of this

and all subsequent results is in Appendix A.

Proposition 1 (Convergence of the IV Estimator). Assume that E[Z̃itX̃
′
it] is finite and full

rank (instrument relevance). The following are true:

1. If Condition 1 holds and
(
ηi, λi, (εit)

T
t=1 , (eit)

T
t=1

)
are drawn i.i.d. across regions, then

β̂
p→ β as N → ∞.

2. If Condition 2 holds and
(
St, Ft, (εit)

N
i=1 , (eit)

N
i=1

)
are stationary and strongly mixing

across time, then β̂
p→ β and T → ∞.

This result is related to other consistency results in the literature, including Proposition

1 of Adão et al. (2019), Proposition 3 (and the discussion in Section 4.3) of Borusyak et al.

(2022), and Theorem 1 in Arkhangelsky and Korovkin (2023).

2.4 From Identification to Inference

We now turn to our main focus: inference in regional-exposure settings. In particular, how

do assumptions about the sources of identification affect the validity of common strategies for

inference? We show that clustering by region is likely invalid in settings where identification

comes from shocks. We will use this finding to motivate our analysis of econometric solutions

in Section 3.

Unpacking The Asymptotic Variance of β̂. Whichever of our two routes to identifi-

cation we rely on, the instrumental variables estimator will have an asymptotic variance of
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the familiar “sandwich” form:6

AVAR
(√

N · β̂
)
=E

[
Z̃itX̃

′
it

]−1

AVAR

(
1√
N

· 1
T

∑
i,t

Z̃itũit

)
E
[
X̃itZ̃

′
it

]−1

(7)

The “bread” of this expression, E
[
Z̃itX̃

′
it

]−1

, is straightforward to estimate. We are primarily

concerned with the middle, “meat” term, which we denote as

Ω := AVAR

(
1√
N

· 1
T

∑
i,t

Z̃itũit

)
(8)

We next use Equation 4, or the factor structure of ũit, to simplify this term:7

Ω = AVAR

(
1√
N

· 1
T

∑
i,t

Z̃itλ̃
′
iF̃t

)
+AVAR

(
1√
N

· 1
T

·
∑
i,t

Z̃itε̃it

)

+ 2 · 1
T

∑
i,t

∑
j,s

E
[
Z̃itZ̃jsλ̃

′
iF̃tε̃js

] (9)

For the remaining results in this paper, we will strengthen Assumption 2 to the following:

Assumption 3. For all i, (εit)
T
t=1 ⊥⊥

(
(ηj)

N
j=1 , (λj)

N
j=1 , (St)

T
t=1 , (Ft)

T
t=1

)
.

This strengthens the interpretation of εit as an idiosyncratic component of the residual,

by making ε independent from other variables. For example, without this assumption, it

would be possible for εit to be equal to the factor component, λ′
iFt, as long as E [λ′

iFtZit] = 0.

Assumption 3 allows us to highlight how the factor component complicates inference, relative

to a more traditional model with idiosyncratic residual shocks. Note, however, that this

assumption is still compatible with cross-sectional or time-series dependence in εit of other

forms.

An implication of Assumption 3 is that E
[
λ̃′
iF̃tε̃js | Z

]
= 0. The third term in Equation

9 is zero, and we can therefore write Ω as the sum of two terms,

Ω = AVAR

(
1√
N

· 1
T

∑
i,t

Z̃itλ̃
′
iF̃t

)
︸ ︷︷ ︸

Factor component

+AVAR

(
1√
N

· 1
T

∑
i,t

Z̃itε̃it

)
︸ ︷︷ ︸

Idiosyncratic component

(10)

6Our analysis of the asymptotic variance will assume that N → ∞, and will rely on
√
N asymptotics,

consistent with the assumptions behind clustering by region. When we move to the two-way clustering
setting, we will also require T → ∞.

7Note that the double-demeaning “passes through” the factor structure. That is, ũit = λ̃′
iF̃t + ε̃it, where

λ̃i = λi − λ̄ and F̃t = Ft − F̄ .
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Separating the asymptotic variance of β̂ into a factor component and an idiosyncratic

component helps provide intuition about how clustering by region might fail. Clustering

by region will be valid if it is valid for both the factor component and the idiosyncratic

component.8 If the idiosyncratic component Z̃itε̃it is uncorrelated across regions, and if

the factor component Z̃itλ̃
′
iF̃t is also uncorrelated across regions, then clustering by region

will yield consistent standard errors under appropriate regularity conditions. If the factor

component is not uncorrelated across regions, then clustering by region will typically be

invalid.

We now examine how our identification assumptions will affect inference. Whether we

get identification from shocks or from shares will determine which of the factor component

covariance terms can be treated as zero. The following result demonstrates the critical role

played by the identification assumption in this context:9

Lemma 1. Let ω (i, j, t, s) = E
[
Zit · λ′

iFt · Zjs · λ′
jFs

]
be the factor component covariance

between units (i, t) and (j, s). The following statements are true:

1. If identification comes from shares (Condition 1) and (ηi, λi) is independent across

regions, then ω (i, j, t, s) = 0 for all i ̸= j.

2. If identification comes from shocks (Condition 2) and (St, Ft) is independent across

time, then ω (i, j, t, s) = 0 for all t ̸= s.

The first part of the result gives a sufficient condition for the factor component not

to induce correlation across regions: a combination of identification from shares and the

assumption that shares are drawn independently across regions. Intuitively, the presence of a

common factor does not induce cross-regional correlation on average if regions’ characteristics

are independently drawn. The lack of covariances across regions moreover suggests that,

under the conditions of Part 1, clustering by region is valid.

The second part of the result gives a sufficient condition for the factor component not

to induce correlation across time: a combination of identification from shares and the as-

sumption that common factors are not autocorrelated. The lack of covariances across time

moreover suggests that, under the conditions of Part 2, clustering by time is valid.

When is Clustering by Region Valid? We now apply the logic of Lemma 1 to evaluate

the standard econometric practice of clustering standard errors by region. Part 1 of that

result suggested that this practice may be valid under the combination of identification from

shares and independent draws of regional exposures as N → ∞. We formalize this below.

8Mirroring our discussion of identification, there is also a knife-edge case in which non-zero covariances
in each term cancel out that seems unlikely to arise in practice.

9In the Appendix, we prove a similar lemma for the demeaned objects.
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Proposition 2 (Clustering by Region is Valid Under Identification from Shares). Assume

Condition 1 (Identification from Shares) and that
(
ηi, λi, (εit)

T
t=1 , (eit)

T
t=1

)
is drawn i.i.d.

across regions. Then clustering by region consistently estimates AVAR
(√

N · β̂
)
as N → ∞.

Clustering by region, however, is generally not valid under identification from shocks.

This is because a setting with non-random assignment of shares allows different regions to

predictably move together in response to unobserved aggregate shocks. Below, we formalize

this point and describe the asymptotic bias in the region-clustered standard error estimator:

Proposition 3 (Clustering by Region is Biased Under Identification from Shocks). Assume

Condition 2 (Identification from Shocks), that
(
ηi, λi, (εit)

T
t=1

)
is drawn i.i.d. across regions,

that ε is independent of Z, and that (St, Ft) is drawn i.i.d. across time. Define

ΩCR := E

[(
1

T

∑
t

Z̃itũit

)(
1

T

∑
t

Z̃itũit

)′]
(11)

(i.e., the asymptotic limit of the region-clustered estimator, when such a limit is well-defined),

and assume this expectation exists and is finite. Then, as N → ∞, the asymptotic bias of

the clustered estimate of Ω is given by:10

1

N
(ΩCR − Ω) → − 1

T
E
[
(S̃ ′

tE
[
η̃iλ̃

′
i

]
F̃t)

2
]
−O

(
1

T 2

)
(12)

In the scalar case J = K = 1, this reduces to

1

N
(ΩCR − Ω) → − 1

T
E[η̃iλ̃i]

2 E
[(

S̃tF̃t

)2]
−O

(
1

T 2

)
(13)

If we have identification from shocks rather than identification from shares, then cluster-

ing by region will give invalid standard errors. The bias is such that the confidence intervals

will typically be too tight (that is, ignoring the O(1/T 2) term arising from finite sample

estimation of the fixed effects). Moreover, this bias is proportional to the number of regions,

N . Clustering by region will falsely suggest that the standard errors shrink to zero as N

grows large, but with small T the true standard errors will remain large. In such settings,

researchers may believe that the data have spoken clearly, when in fact their results are

mostly noise.

10Because we are double-demeaning our variables, ΩCR depends on N (as well as T ). We consider the
case where N → ∞ because it ensures convergence of cross-sectional means.
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3 Proposed Econometric Solutions

Having cast doubt on conventional inference techniques, we now discuss potential solutions.

We first discuss methods for confidence intervals that practitioners can feel confident in. We

argue that two-way clustering and a combination of two-way clustering with an autocorrela-

tion correction can be valid for settings in which clustering by region fails. We also propose

a randomization inference method. Finally, we propose a method to construct a feasible

optimal instrument à la Chamberlain (1987, 1992), which reweights data based on the factor

structure to obtain a potentially more efficient estimator.

3.1 Better Standard Errors for Asymptotic Inference

Although clustering by region does not yield valid standard errors if identification comes from

shocks, various existing methods yield valid standard errors in this setting. In this subsection,

we discuss two options: two-way clustering and a combination of two-way clustering with an

autocorrelation correction. Regardless of whether identification comes from shares or shocks,

two-way clustering yields valid standard errors if shocks are uncorrelated across time. We

also discuss a method that enriches two-way clustering to allow for autocorrelation of shocks.

We also comment on how these issues interaction with weak identification.

Two-way Clustering. Two-way clustering is an extension of one-way clustering that

allows for both arbitrary correlation of the error term within region and arbitrary correlation

of the error term within time period.11 Although this imposes weaker restrictions on the

correlation structure of the error term than one-way clustering, it still imposes that the

“instrument-times-error” term is uncorrelated for observations that are in both different

regions and different time periods.

Two-way clustering is implemented by combining clustering by region with clustering by

time. To estimate the “meat” Ω (Equation 8), two-way clustering proposes the following

estimator and considers its properties as N → ∞ and T → ∞:

Ω̂TWC =
1

NT 2

∑
i,t

∑
j,s

1 (i = j OR t = s) ũitũjsZ̃itZ̃js (14)

Essentially, two-way clustering allows for arbitrary within-region and within-time correlation

of the instrument-times-error by setting 1 (i = j OR t = s) equal to one within-region or

within-time, and estimating the appropriate covariance. That indicator is still set to zero,

11This method was introduced by Miglioretti and Heagerty (2007) and was further developed, indepen-
dently, by Cameron et al. (2011) and Thompson (2011).
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however, for observations that are in different regions and different times, and so those

covariances are assumed to be zero. To illustrate: clustering by region imposes that the

instrument-times-error term in New York is uncorrelated with the instrument-times-error

term in California, while two-way clustering imposes that the instrument-times-error term

in New York in 2005 is uncorrelated with the instrument-times-error term in California in

2006.

Like clustering by region, two-way clustering is valid under identification from shares,

under appropriate additional assumptions about dependence in the cross-section. If identifi-

cation comes from shares and (ηi, λi) is drawn independently across regions, then Lemma 1

tells us that the factor component of the instrument-times-error term is uncorrelated across

regions. If the idiosyncratic component is also uncorrelated across regions, then the whole

instrument-times-error term is uncorrelated across regions, which allows us to either cluster

by region or two-way cluster.

Unlike clustering by region, two-way clustering is also valid under identification from

shocks, under appropriate assumptions about dependence across time. If identification comes

from shocks and (St, Ft) is drawn independently across time, then Lemma 1 tells us that

the factor component of the instrument-times-error term is uncorrelated across time. If the

idiosyncratic component is uncorrelated across regions, then although the full instrument-

times-error term has neither uncorrelatedness across region nor uncorrelatedness across time,

it does have the property that observations that are from different regions and different time

periods will have uncorrelated instrument-times-error terms.

Thus, two-way clustering is identification-agnostic: it does not require the researcher to

take an a priori stand on whether identification comes from shocks or shares. This is an

especially desirable property because it reduces researcher degrees of freedom. Regardless

of whether identification comes from shocks or shares, two-way clustering is strictly more

robust than one-way clustering by region or time.

Below, we formalize the logic that the asymptotic variance of
√
N · β̂ has a two-way

clustering form:

Proposition 4. (Two-Way Clustering is Valid Under Either Identification Con-

dition) Assume that (εit)
T
t=1 is drawn i.i.d. across regions. Assume further either of the

following:

1. Condition 1 (Identification from Shares) holds and (ηi, λi) are i.i.d. across regions.

2. Condition 2 (Identification from Shocks) holds and (St, Ft) are i.i.d across time.

Then, Ω = ΩTWC, under the limit where N
T

→ C, where C is a constant. That is,

AVAR
(√

N · β̂
)
= limN→∞,T→∞,N

T
→C

1
NT 2

∑
i,t

∑
j,s 1 (i = j OR t = s)E

[
ũitũjsZ̃itZ̃js

]
.
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An implication of this result is that if Ω̂TWC consistently estimates ΩTWC , then it will

consistently estimate the asymptotic variance. Note, however that providing conditions un-

der which Ω̂TWC consistently estimates ΩTWC is still an area of active research (see Davezies

et al., 2021; MacKinnon et al., 2021; Menzel, 2021). We will later show Monte Carlo evidence,

in our application, on the performance of two-way clustering.

Autocorrelation-Robust Clustered Standard Errors. Although two-way clustering

allows for arbitrary correlation within-region or within-time, it imposes that observations

that are both from different regions and different time periods (e.g., New York in 2005 and

California in 2006) have uncorrelated error terms. Under identification from shocks, this

requires shocks to be uncorrelated across time: if New York and California are affected by

factor shocks, and those shocks are persistent over time, then California in 2006 will still be

affected by the shock that affected both it and New York in 2005.

Thompson (2011) proposes an estimator that augments two-way clustering with addi-

tional terms that model cross-regional, cross-time period correlation.12 In this “two-way

HAC” method, one estimates the “meat” Ω as

Ω̂TWHAC =
1

NT 2

∑
i,t

∑
j,s

max{K(t, s),1(i = j)} ûitûjsZ̃itZ̃js (15)

where K(t, s) = max
{
1− |t−s|

L+1
, 0
}

is a kernel weight (here, the Bartlett kernel), parame-

terized by a bandwidth L. The use of the kernel allows for some persistence of the shock,

although the autocovariance must eventually die off. If the bandwidth, L, is selected in a

way that increases with the number of time periods, then as T → ∞ we also have L → ∞.

At the other extreme, if L = 0, this formula reduces to the two-way clustered standard errors

considered earlier.

To our knowledge, there are no results about the asymptotic consistency of these standard

errors in the literature.13 Nonetheless, we derive confidence from our own simulation results

(Section 4) that these methods can provide a good estimate of the standard error.

One downside of two-way clustered standard errors, with and without HAC corrections, is

that they may be less efficiently estimated than those clustered just by region. If a researcher

is confident that identification comes from shares and not shocks, then she may favor simple

clustering by region. However, as we will see later in our application, identification from

12This method builds on prior work by Driscoll and Kraay (1998), who introduced a similar estimator that
uses a kernel to allow for covariances that decay over time, but does not otherwise allow for within-region
clustering.

13We conjecture that it would be possible to prove such a result if one assumed that the shock and factor
processes were α-mixing and applied a central limit theorem for α-mixing random fields, as in Driscoll and
Kraay (1998).
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shares is unlikely to hold in practice. As a result, using a more robust formula for computing

confidence intervals is crucial, and, in our application, will substantially change the results.

Weak Identification. We have focused so far on constructing valid confidence intervals

under the assumption of a strong first stage, highlighting that the true uncertainty may

be larger than what is suggested by clustering by region. The same concerns apply to the

strength of the first stage. A first-stage relationship that appears strong according to an F -

statistic that clusters by region may, in truth, be weak under a valid F -statistic. A standard

solution is to construct confidence intervals based on weak-instrument robust tests. While

Proposition 4 focused on the asymptotic variance of β̂, our recommendations for consistently

estimating Ω also can be used to compute test statistics such as the Anderson and Rubin

(1949) statistic.

3.2 Randomization Inference for Finite-Sample-Valid Inference

An alternative method for constructing confidence intervals is to use randomization inference,

as suggested in Borusyak and Hull (2021b). Randomization inference has two advantages

over traditional asymptotic inference in our settings. First, randomization inference is valid in

finite samples. This may be especially relevant in settings where the number of time periods

is small and thus asymptotic approximations may be poor. Second, our randomization

inference procedure will be weak-instrument robust. The main cost is that one must take a

stand on the data-generating process for the instrument.

Randomization inference inverts the logic of traditional inference. In traditional inference,

the thought experiment is to redraw the residuals: we attempt to determine the variance of

β̂ by imagining that the residuals could have come out differently in a different draw. In

contrast, randomization inference holds the residuals fixed and, instead, redraws the shocks.

If we believe that identification comes from shocks, and we believe we know the underlying

data generating process for the observable shocks St, then we can redraw St. To construct

a hypothesis test, we compute the test statistic under the null hypothesis in the actual

data, and compare this with the distribution of the test statistic under the counterfactual

draws. To generate confidence intervals, we run the hypothesis test for each value of β0

under consideration, and define the confidence interval as the set of β0 for which the test

fails to reject the null.

To implement this procedure, we need to assume a data-generating process for the shocks

St and define a test statistic. Below, we describe the procedure that we will use in our ap-

plication in Section 4. This procedure is defined without regional and time fixed effects, and

we implement the procedure after double-demeaning the data.
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Algorithm 1. (Randomization Inference with One-Dimensional Shock) To test

a null hypothesis β = β0,

1. Estimate a Gaussian AR(1) process for St:

St = µ+ ρSt−1 + σξt (16)

where ξt ∼ N (0, 1).

2. Simulate St using Equation 16 using estimates (µ̂, ρ̂, σ̂) and random shocks {ξsimt }Tt=1.

3. For each draw {Ssim
t }Tt=1, construct the simulated instrument Zsim

it = ηi · Ssim
t .

4. Compare in-sample test statistic,

T :=
1

NT

∑
i,t

Zit (Yit −Xitβ0) (17)

to the simulated distribution of T sim = 1
NT

∑
i,t Z

sim
it (Yit −Xitβ0), rejecting β0 at the α

level if |T | is above the 1− α quantile of |T sim| (two-sided test).

Borusyak and Hull (2021b) show that randomization inference generates exact confidence

intervals in a range of settings (including ours), as long as the underlying data-generating

process for shocks is correctly specified. The need for correct specification raises two issues

in our setting: the estimated parameters must be the true parameters, and the functional

form assumptions must be correct.

As T grows large, the estimated parameters of the shock process will converge to the

true parameters, under appropriate assumptions about the data generating process. The

simulated cdf of the test statistic (times
√
T and divided by the standard deviation) will be

standard normal, and by continuity of our randomization inference procedure in (µ, ρ, σ), it

also follows that the (rescaled) cdf will converge to a standard normal as the sample size

grows large. Since the procedure is invariant to multiplying the test statistic by a scalar,

this implies that the procedure will give correct coverage as T grows large, even though the

parameters of the data-generating process for shocks are estimated.

The functional form issue is more difficult to solve: for realistic values of T , we will

need to impose some parametric assumptions on the data generating process for shocks.

In our application, we are reassured by the fact that a Gaussian AR(1) process seems to

fit the data well. We also find that two richer data-generating processes, an AR(1) with

18



Gaussian-mixture errors and a Gaussian AR(2), yield very similar randomization inference

results.

Our analysis uses the test statistic (Equation 17) suggested by Borusyak and Hull (2021b).

This statistic depends only on the instrument Zit and the residual Yit −Xitβ0. Conditional

on those variables, it depends neither on the endogenous variable Xit nor the first-stage

coefficient π. Thus, we do not need to specify a data-generating process for Xit or make

an assumption about π to conduct inference. As a result, the statistical test will be weak-

instrument robust.

3.3 Efficient Estimation with (Feasible) Optimal Instruments

Constructing valid confidence intervals may reveal that the standard instrumental variables

estimator is too imprecise. How can we improve statistical power, while maintaining correct

size?

We propose using the factor structure of the residuals to construct the optimal instru-

ment. If we know the factor structure of the residuals, then we can improve the standard

instrument through reweighting, in a process similar to generalized least squares (GLS).

The following result, adapted from Borusyak and Hull (2021a), gives an expression for

the optimal instrument (Chamberlain, 1987, 1992) that minimizes the asymptotic variance

of the IV estimator. We let X, Y , Z, and u denote NT × 1 vectors that stack the data, let

η denote a N × 1 vector that stacks the loadings, and let S be a T × 1 vector that stacks

the shocks.

Proposition 5 (Borusyak and Hull (2021a)). Suppose that the shocks, S, are indepen-

dent of the error term, u, conditional on the shares, η. That is, S ⊥ u | η. Also, suppose

that E[uu′ | η] is almost-surely invertible. Consider the instrument

Z∗ = E [uu′ | η]−1
(E [X | S, η]− E [X | η]) (18)

Then if the associated IV estimator β∗ = Z∗′Y/Z∗′X is regular, it has the smallest asymptotic

variance of all regular recentered IV estimators.14

Note that, in our setting, assuming S ⊥ u | η implies that we are relying on identification

from shocks.

14Borusyak and Hull (2021a) define a regular IV estimator as follows: “We say that β̃ [= Z̃ ′Y/Z̃ ′X] is

’regular’ if it converges to β at some rate rN , if it has an asymptotic first stage (i.e. 1
N Z̃ ′X

p→ M for some

M ̸= 0), and if the sequences of 1
N Z̃ ′X and

(
rN

1
N Z̃ ′u

)2
are uniformly integrable.” Regularity is not implied

by our earlier assumption of finite “cross-term” moments between X, Y , and Z. But it would be trivially
implied, for example, were all random variables bounded.
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The result of Borusyak and Hull (2021a) is quite general, and it simplifies substantially

in our setting. First, since ηi is constant over time, the E [X | η] term will be absorbed by

the region fixed effect. Thus, we can simply use E [Xit | S, η]− E [Xit | η] = π · η′iSt, relying

on the region fixed effect to residualize the instrument appropriately.

The remaining relevant parameter is E [uu′ | η]−1. We simplify this expression under the

approximate factor structure and four additional assumptions. The first, reintroduced from

Section 2.4, is that the factors and idiosyncratic shocks are uncorrelated, conditional on the

instrument. That is, E [λ′
iFtεjs | Zit, Zjs] = 0. The second, new to this subsection, is that

idiosyncratic components are i.i.d. across observations. We write σ2
ε = E[ε2it]. The third is

that the factors Ft are i.i.d. across time periods. We write ΣF = E[FtF
′
t ]. Finally, we treat

λi as fixed, so that E [λ′
iΣFλj | η] = λ′

iΣFλj. Under these assumptions, we can write:

E [uitujs | η] =


λ′
iΣFλj + σ2

ε if s = t, j = i

λ′
iΣFλj if s = t, j ̸= i

0 otherwise

(19)

Equation 19 states that residual correlations across regions depend solely on the factor

component of the residuals. If two regions have similar factor loadings, λi, then their residuals

will be positively correlated, and they will not provide independent information. The optimal

instrument reweights the data so that the residuals are uncorrelated and homoskedastic.

Each observation in the reweighted data provides independent information.

Feasible Implementation. In practice, we cannot implement the optimal instrument,

because we do not know the true factor structure of the errors and instead must estimate it.

We will thus implement a feasible version of the optimal instrument. This entails estimating

ΣF , σ
2
ε , and (λi)

N
i=1.

To do this, we first construct the model residuals under the assumption that β = B,

that is, uit = Yit − XitB. We then estimate the approximate factor structure of these uit

using principal components analysis (PCA). As shown by Stock and Watson (2002), PCA

will give consistent estimates of the factors and the loadings as long as N, T → ∞. We write

uit = λ′
iFt + εit, where λ′

iFt contains the first J components estimated by PCA. Finally, we

estimate the parameters

σ̂2
ε (B, J) =

1

NT

∑
i,t

ε̂2it

Σ̂F (B, J) =
1

T

∑
t

F̂tF̂
′
t

(20)
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and take λ̂i (B, J) as the PCA estimates. We write all three statistics as a function of tuning

parameters (B, J); we will discuss how to select these parameters momentarily. We use these

parameter estimates to construct a feasible analogue to Equation 19, and hence a feasible

reweighting matrix for our optimal instrument. We summarize these steps in the following

algorithm:

Algorithm 2. (Feasible Optimal Instrument) Given a value of B and J ,

1. Back out residuals uit = Yit −XitB.

2. Use PCA on uit. Select the first J components to define λ̂i and F̂t, and define ε̂it =

uit − λ̂′
iF̂t.

3. Estimate (σ̂2
ε(B, J), Σ̂F (B, J)) using Equation 20.

4. Construct an estimator Ŵ (B, J) of E [uu′ | η]−1 by plugging σ̂2
ε (B, J) , Σ̂F (B, J), and(

λ̂i (B, J)
)N
i=1

into Equation 19.

5. Construct the new instrument Z∗ = Ŵ (B, J)Z.

We can use the feasible optimal instrument to generate a point estimate β̂opt(B, J) and

associated confidence intervals. Consistent with Proposition 5, the optimal instrument could

improve efficiency substantially, insofar as the feasible instrument is close to the (infeasible)

true optimal instrument. We can also use the feasible optimal instrument to perform more

efficient randomization inference. We elaborate on this next.

Efficient Randomization Inference. To perform randomization inference using the op-

timal instrument, we combine Algorithms 1 and 2. We use the following steps:

Algorithm 3. (Efficient Randomization Inference with One-Dimensional Shock)

Fix a value of B and J . To test a null hypothesis β = β0,

1. Perform Steps 1-3 of Algorithm 1 to obtain simulated unweighted instrument Zsim.

2. Use Algorithm 2 to construct an estimator Ŵ (B, J) of the weighting matrix E[uu′ |
η]−1; a feasible optimal instrument, Z∗ (B, J) = Ŵ (B, J)Z; and simulated feasible

optimal instruments, Z∗sim = Ŵ (B, J)Zsim.Compare in-sample test statistic,

T :=
1

NT

∑
i,t

Z∗
it (Yit −Xitβ0) (21)
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to the simulated distribution of T sim = 1
NT

∑
i,t Z

∗sim
it (Yit −Xitβ0), rejecting β0 at the

α level if |T | is above the 1− α quantile of |T sim| (two-sided test).

The feasible implementation of the optimal instrument requires estimation of the weight-

ing matrix Ŵ (B, J). If we select B = β0, where β0 is the null hypothesis, then Ŵ is fixed

under the null in the randomization inference thought experiment. This is because Ŵ de-

pends solely on the residuals uit = Yit −XitB = Yit −Xitβ0, which are themselves held fixed

under the null. As a result, if B = β0, our procedure will have correct size in finite samples

by construction.

In contrast, if B ̸= β0, our estimate of the weighting matrix will be a random variable,

even under the null hypothesis. To see this, we first observe that

Yit −XitB = uit +Xit (β0 −B)

= uit + (πZit + eit) (β0 −B)

= uit + (β0 −B) πηiSt + (β0 −B) eit

(22)

Thus, the (mis)estimated residuals on which Ŵ are based are “contaminated” by St, which

is random. Thus, our randomization inference procedure will not fully account for the

estimation of the weighting matrix and, as a consequence, may have distorted size. This

distortion will be small if B is close to β0. The magnitude of this size distortion can be

measured in simulation, as we illustrate in Section 4.4.

Our discussion so far has assumed that the tuning parameters, B and J , have already

been selected. Picking these parameters sensibly is important to unlocking the efficiency

benefits of the feasible optimal instrument, while limiting size distortions. We next discuss

how to select these tuning parameters.

Selecting Tuning Parameters. We propose two methods to select B. The first method

is to always use B = β0, where β0 is the null hypothesis. As observed above, this value of

B, when combined with randomization inference, will always yield correct size despite the

estimation of the weighting matrix. However, if the researcher believes that the true B is

most likely not equal to β0, then tests using B = β0 may be less powerful than sensible

alternatives. Moreover, the B = β0 approach is not useful for generating a point estimate,

β̂opt(B, J) , since β0 is only defined in the context of hypothesis testing.

A second approach is to select B based on the researcher’s priors. If the researcher’s priors

are close to the true β, then selecting such a B is likely to yield a better approximation to

the true optimal instrument, maximizing power. This approach also allows the researcher to

generate point estimates. We demonstrate both approaches in practice in our application to

regional fiscal multipliers.
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Once the researcher has selected B, we propose selecting J based on a simulation of

power and size. We construct this simulation to mirror randomization inference. First, the

researcher generates simulated data under an alternative hypothesis, β = βa and π = πa.

Note that it is necessary to specify a hypothesized first stage because we will simulate new

values of X and Y , instead of just redrawing the instrument. Then, for each simulation

draw, the researcher conducts efficient randomization inference as in Algorithm 3, using a

particular value of J and testing the null hypothesis β = β0. The frequency with which

efficient randomization inference rejects β0 gives the simulated power of the test under the

alternative hypothesis. When βa = β0, the simulation gives the size of the test and allows us

to measure any distortion arising from the fact that B ̸= β0. The researcher repeats this for

each value of J under consideration, and then picks a value that achieves high power while

limiting size distortions.

In summary, we use the following steps to simulate power/size depending on B and J :

Algorithm 4. (Power/Size Simulation) Fix values of βa, πa, β0, B, and J .

1. Back out the true residuals of the data under βa and πa, using

eit = Xit − πaZit

uit = Yit − βaXit

(23)

2. Perform Steps 1-3 of Algorithm 1 to obtain simulated instrument Zsim. Let R denote

the number of simulation draws.

3. Let Zsim,r
it denote the r-th simulation draw of the instrument. Simulate new draws of

Xsim,r and Y sim,r, using:

Xsim,r
it = πaZ

sim,r
it + eit

Y sim,r
it = βaX

sim,r
it + uit

(24)

4. For each simulation r ∈ {1, . . . , R}, calculate whether randomization inference would

reject the hypothesis β = β0 in simulated data that imposes β = βa and π = πa:

(a) For a given B and J , treating (Xsim,r, Y sim,r) as the data, calculate a weighting

matrix Ŵr(B, J) as in Algorithm 2.

(b) For each simulation s ∈ {1, . . . R}, define the optimal instrument Z∗sim,r,s
it =

Ŵr(B, J)Zsim,s, calculate the test statistic

T r,s :=
1

NT

∑
i,t

Z∗sim,r,s
it

(
Y sim,r
it −Xsim,r

it β0

)
(25)
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and record rejectr(B, J) = 1 if |T r,r| exceeds the 1− α quantile of the simulations

{|T r,s|}Rs=1. Otherwise, record rejectr(B, J) = 0.

5. Compute the probability of rejection across simulations, reject(B, J) = 1
R

∑R
r=1 rejectr(B, J).

This corresponds to power if βa ̸= β0, and to size if βa = β0.

In this approach, the researcher thus must conduct a simulation within a simulation. For

each “outer” simulation r, we generate new draws of Xsim,r, Y sim,r, and Zsim,r. Then, for

each outer simulation, we conduct “inner” simulations s, in which we draw new values of

the unweighted instrument, Zsim,s. However, because the process to draw the instrument

Zsim
it does not depend on X and Y , we only need to simulate a distribution of Zsim once,

substantially reducing the computational burden.15

To use our approach to calculate power or size, one must specify values for the null

and alternative hypotheses. Selecting β0 is typically straightforward: there is usually a

specific null hypothesis that the researcher is testing.16 Selecting βa and πa is more difficult.

These should correspond to natural alternative hypotheses given the nature of the economic

question, and/or to the researcher’s priors. This is likely to be easier in some settings

than others. In our regional fiscal multipliers example, a natural choice is βa = 1.5, which

corresponds to a common view about the size of the fiscal multiplier among many economists,

and πa = 1, which corresponds to the view that military procurement spending increases in

each state in fixed proportion to the level of national spending. In settings where economists

do not yet have well-formed priors, selecting the alternative hypothesis will be more difficult.

3.4 Further Issues

Before proceeding, we comment on two further issues: choosing the level at which to do the

analysis and inference in shift-share designs. Although they are not the primary focus of our

analysis, our framework is useful to better understand these topics.

Choosing the Unit of Analysis. Researchers interested in the effect of an aggregate

shock, St, often must choose the level of aggregation at which to do the analysis. One key

question is whether to do a time-series analysis (e.g., with national level data) or a panel

analysis (e.g., with regional data). One issue is that the national and regional analyses may

15Note that this procedure assumes that the data-generating process for the shocks, St, is known. If our
algorithm also re-estimated the parameters of the shock data-generating process on Ssim,r within each outer
simulation before generating new draws of Ssim,r,s for the inner simulation, then we could not take advantage
of this computational shortcut.

16In principle, a researcher constructing a confidence interval for β could select an optimal B and J for each
point they are testing to generate their confidence interval. In practice, this is computationally burdensome,
and using the same J for the whole confidence interval is much more practical.
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estimate different quantities: for example, the aggregate fiscal multiplier will typically be

different from the regional fiscal multiplier, due to trade across regions and the response of

monetary policy to fiscal shocks.

The national and regional approaches also rely on different identifying assumptions, which

our framework helps to clarify. Suppose, for illustration, that the national variables are an

unweighted average of the regional variables.17 Aggregating the structural equation (2) gives

the new regression

Yt = β ·Xt + αt +
1

N

∑
i

(εit + λ′
iFt)︸ ︷︷ ︸

ut

(26)

Consider estimating this model using the instrumental variable Zt = St. The identifying

assumption for the national regression is that Zt is orthogonal to ut. Since λi has mean zero

and εit also has mean zero in each period, the identification condition reduces to E [Ztut] =

E [Stαt] = 0. Thus, the national regression requires that the shock, St, is orthogonal from

other aggregate shocks that affect all regions equally, αt. This is in contrast to identification

from shocks in the regional setting, which requires St to be orthogonal to aggregate shocks that

differentially affect regions, Ft. Although conceptually related, these identifying assumptions

are distinct and non-nested.

One potential advantage of the regional regression versus the national regression is that,

in many cases, it may increase the amount of variation that the researcher can exploit, im-

proving statistical power. This is application specific, and will depend both on the variation

in the regressor and the cross-region correlation structure of the residual. We provide valid

confidence intervals for the regional case, so that researchers can correctly assess how much

more precision the regional regression has provided them.

A researcher who chooses to do a regional analysis must also choose the level at which

to do the analysis: for example, whether to do an analysis at the state or county level.

Using more granular data has the potential to offer additional precision, by exploiting finer

variation in the treatment. However, granular data raises two issues. First, using more

granular data may change the quantity being estimated, due to spillovers across adjacent

regions. This is distinct from the issue of correctly estimating standard errors: researchers

who use more granular data must either handle spillovers econometrically and/or have some

model for how to map regional estimates to aggregate effects.

Second, to the extent that shocks are correlated across (granular) regions, increasing the

number of regions may further distort inference. In fact, Proposition 3 shows that the size

17A similar argument holds if the national variables are a weighted average with weights that are uncor-
related with the regional exposures λi.
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of the bias in the region-clustered standard error is proportional to the ratio of N to T .

Here, our proposed methods for inference can help. By correctly handling the cross-region

correlation structure of the residual, our methods can allow researchers to exploit more

granular data without worrying that it will distort their confidence intervals.

Shift-Share Designs. The recent literature on shift-share instruments can also be un-

derstood in the context of our framework. Goldsmith-Pinkham et al. (2020) achieve iden-

tification through as-good-as-random assignment of shares, consistent with our Condition

1. Adão et al. (2019) and Borusyak et al. (2022) argue that identification from shocks (our

Condition 2) is more plausible and show that traditional clustering by region is invalid in

that setting.

We differ from the shift-share literature in at least two key respects. First, although we

agree with Adão et al. (2019) and Borusyak et al. (2022) that identification from shocks is

the most plausible path, we solve the inference problem differently. In order to construct

valid standard errors, Adão et al. (2019) and Borusyak et al. (2022) assume that shocks are

independent across sectors (or clustered at some higher-level sector), and rely on asymptotics

in which the number of sectors grows large. Intuitively, their standard errors cluster by

sector, rather than clustering by region. In contrast, we hold K fixed and rely on T → ∞
asymptotics. This is necessary in many settings, such as Nakamura and Steinsson (2014) or

Nunn and Qian (2014), where K = 1. It also allows us to sidestep the question of whether

shocks are independent (or sufficiently weakly dependent) across sectors, as well as the issue

of whether sectoral shares go to zero in the limit.18

Second, while the standard errors suggested by Adão et al. (2019) and Borusyak et al.

(2022) are only valid under identification from shocks, our recommendation of two-way clus-

tering (and two-way HAC) is identification-agnostic. Two-way clustering is valid under

identification from shocks or shares. Moreover, two-way clustering can accomodate differ-

ent clustering assumptions for the factor component and the idiosyncratic component of

the residual: e.g., the factor shocks can be drawn i.i.d. across time while the idiosyncratic

component is i.i.d. across region.

Unfortunately, many shift-share studies have relatively few time periods with which to

do inference. The methods we provide to construct valid confidence intervals rely on large

T , and thus cannot be used in these settings. We thus cannot compare our own estimates

of the standard error in these settings to the standard errors provided by Adão et al. (2019)

18For example, under some production networks with spillovers, Acemoglu et al. (2012) show that firm-
level growth rates can be strongly dependent and sectoral shares can be non-vanishing, even as the number
of firms goes to infinity. A factor structure to sectoral shocks, as in Foerster et al. (2011), would also feature
strong dependence. Gabaix (2011) observes that the firm size distribution follows a power law, and thus
sectoral shares may be non-vanishing.
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and Borusyak et al. (2022), and so we cannot easily determine how important these concerns

are in practice. We believe this is an important area for future research.

4 Application: Regional Fiscal Multipliers

To study how important our theoretical concerns are in practice, we apply them to the

estimation of regional fiscal multipliers in Nakamura and Steinsson (2014). These authors

use variation over time in national defense procurement spending, interacted with differential

exposure across US states, to construct an instrument that they use to estimate the regional

fiscal multiplier. As we explain below, this empirical strategy fits within our framework as

a regional-exposure design with identification from shocks.

We first illustrate that the concerns about conventional inference that we raise in Section

2 apply in this setting. There is a strong factor structure to the residual, with the first

two principal components explaining over 60% of the variance. This suggests that residuals

are not independent across states, and thus clustering standard errors by state will yield

incorrect confidence intervals. We demonstrate this incorrect coverage using a placebo test,

in which we randomly generate fake military spending shocks. Although β = 0 in this setting

by construction, we incorrectly reject this null hypothesis more than 25% of the time when

using standard errors clustered by state.

We then show that valid confidence intervals estimate the regional fiscal multiplier with

considerably more uncertainty than state-clustered standard errors would suggest. Whereas

a state-clustered 95% confidence interval has a lower bound of 0.6, our randomization in-

ference confidence interval contains values as low as 0.1. The feasible optimal instrument

substantially improves power, but we still cannot reject low multipliers at the 95% level.

4.1 Setting

Nakamura and Steinsson (2014) estimate the following equation:

Output Growthit = αt + γi + β ·Military Procurement Growthit + uit (27)

where Output Growthit is defined as
Yit−Yi,t−2

Yi,t−2
, with Yit being per capita output in state i

and year t, and Military Procurement Growthit is defined as
Git−Gi,t−2

Yi,t−2
, with Git being per

capita military procurement spending in that state and year. In their main specification,

the authors use annual data from 1986-2006 on fifty states plus the District of Columbia.

The authors use two instrumental variables strategies. In one strategy, they construct an

instrument that interacts the growth rate of total national military procurement spending
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with the state’s average level of spending, relative to state output, in the first five years of the

sample. In our language, St is the national growth rate of military procurement spending,

and ηi is the average of Git

Yi,t
in the first five years of the sample. We refer to this as the

“Initial Share” strategy. In another strategy, Nakamura and Steinsson (2014) construct 51

instruments, one per state (plus the District of Columbia), as the interaction of state fixed

effects with the growth rate of total national military procurement spending. In essence, the

first stage regressions estimate a sensitivity η̂i for each state using the data. We refer to this

as the “State FE” strategy. This is the preferred specification in the original study.

While we report results below for both strategies, we focus more on the Initial Share

strategy for two reasons. First, this strategy is nested exactly in our framework. Second, in

our simulations, we find that both conventional and weak-IV robust estimators are unreliable

for the “State FE” strategy. How to best estimate models with a large number of instruments

is an active area of research (see, e.g., Mikusheva and Sun, 2023), which is outside this paper’s

focus.

Identification from Shocks or Shares. We begin by asking whether Nakamura and

Steinsson (2014) plausibly achieve identification from shocks or from shares. As we showed

in Section 2, this is important both for assessing whether the identifying assumptions are

plausible and for understanding whether clustering by region is likely to yield valid confidence

intervals.

Although they do not use our paper’s language, the authors themselves argue that iden-

tification in their setting comes from shocks. They write:

Our identifying assumption is that the United States does not embark on mili-

tary buildups—such as those associated with the Vietnam War and the Soviet

invasion of Afghanistan—because states that receive a disproportionate amount

of military spending are doing poorly relative to other states.

In our framework, St represents military buildups and Ft shifts the relative economic per-

formance of high- and low-procurement states. Thus, the authors are arguing that St ⊥ Ft.

Moreover, Nakamura and Steinsson (2014) argue that identification from shares is im-

plausible. They write:

Military spending is notoriously political and thus likely to be endogenous to

regional economic conditions (see, e.g., Mintz 1992).

If military spending is endogenous to regional economic conditions, it seems likely that any

regional exposure variable, ηi, will be correlated with other factor loadings, λi. This is
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especially true given that the exposure variable is itself constructed as the state’s average

level of military spending, as a share of output, in the first five years of the sample.

To fully rule out identification from shares, we show that the initial share of military

spending in state output, ηi in the Initial Share Strategy, is correlated with a variety of

other important variables at the state level. The variables that we consider are the six

control variables from Autor et al. (2013): the share of employment that is in manufacturing,

the share of the population that has a college education, the share that is foreign born, the

share of working-age women that are employed, the share of employment that is in routine

occupations, and an offshorability index for the occupations in that state. We use the 1990

values of these variables.19

We show the correlation between the procurement share, ηi, and these variables in Table 1.

Four of the six correlations are statistically significant: ηi is higher in places with more routine

occupations, more offshorable occupations, a larger college-educated population share, and

a larger foreign population share. This suggests that identification is unlikely to come from

shares. States with different values of ηi are observably different in other ways; to the extent

that these observables may themselves interact with aggregate shocks, we would thus think

that ηi is not orthogonal to λi.

Factor Structure of the Residual. We next study whether the model’s residual has a

factor structure. To do this, we estimate the model from Nakamura and Steinsson and back

out the estimated residuals, ûit. We then use principal component analysis (PCA) on the

estimated residuals to estimate the factor structure (i.e., the shocks λ̂i and the loadings F̂t).

We perform this procedure separately for each of the two instrumental variable strategies.

We then calculate the cumulative share of variance explained by the first 10 factors. We

plot the results in Figure 1, which also indicates an optimally selected number of factors

according to the information criterion in Bai and Ng (2002).

We find that a large component the residual is explained by a few factors. In either

specification, the first two principal components explain more than 60% of the variance of

the residual (66% for the first specification, and 62% for the second specification), and the

factor component explains 80% of the variance using the optimally selected number of factors.

Not only is there a factor structure to the residual, but the factor component explains most

of its variance. Given our earlier finding that identification is unlikely to come from shares,

this strongly suggests that clustering by state will typically yield invalid confidence intervals,

an issue we turn to next.

19Autor et al. construct their data set at the commuting zone level, and exclude Alaska, Hawaii, and
the District of Columbia. We aggregate their variables to the state level by taking the population-weighted
average.
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Table 1: Correlation with Initial Share of Military Spending in State Output

Variable Correlation Variable Correlation
% Employment 0.079 % Employment 0.223
in Manufacturing (p = 0.451) Among Women (p = 0.129)

% College Educated 0.302 % Routine 0.467
(p = 0.023) Occupations (p = 0.005)

% Foreign Born 0.445 Offshorability 0.507
(p < 0.001) (p = 0.001)

Observations 48 48

Notes: This table shows the correlation between the initial share of military spending in state output and
six covariates from Autor et al. (2013). Each p-value is computed from a univariate regression of the initial
military spending share on the covariate, using heteroskedasticity robust standard errors. Autor et al.
(2013) provide their covariates at the commuting zone level and exclude Alaska, Hawaii, and the District
of Columbia. We aggregate their covariates to the state level by taking the population-weighted average.
The variables are the share of employment that is in manufacturing, the share of the population that has
a college education, the share that is foreign born, the share of working-age women that are employed, the
share of employment that is in routine occupations, and an offshorability index for the occupations in that
state. The initial share variable is computed as the share of military procurement spending in state output,
averaged over the first five years of the sample.

4.2 Placebo Test: Standard Methods Reject Too Often

Since the residual has a factor structure, and identification likely comes from shocks rather

than shares, our results suggest that clustering by state is unlikely to yield valid confidence

intervals. To explore how this and other methods perform in practice, we conduct a placebo

test using fake military procurement shocks.

Methods. Our procedure follows the logic of randomization inference, in which the resid-

uals are held fixed but the instrument is redrawn. First, we back out the first- and second-

stage residuals (eit, uit) under a maintained null hypothesis β = 0 and π = π̂, where π̂ is our

first-stage point estimate.20 Next, for each of many simulation draws, we simulate placebo

sequences of national military procurement growth Ssim
t , and the instrument Zsim

it , using

the first three steps of Algorithm 1. In particular, we model national military procurement

spending growth as a Gaussian, AR(1) process, which we estimate in the data. In the data,

our estimate for the shock persistence is ρ = 0.66. We then construct a placebo sequence of

20In Algorithm 1, we did not need to generate simulated values of Xit because our test statistic did not
depend on Xit conditional on uit and Zit. In this exercise, by contrast, the test statistic does depend
directly on Xit. We choose π = π̂ for illustration so that the data-generating process of the placebo (and, in
particular, the first stage correlation of Xsim

it and Zsim
it ) closely matches the observed data.
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Figure 1: Share of Variance in Residual Explained by Factors

Notes: This figure shows the cumulative share of the residual’s variance explained by each principal compo-
nent (factor) in the residual. Residuals are based on the regression model in Nakamura and Steinsson (2014),
estimated using two-stage least squares. Factors are estimated using PCA, and ordered by the share of the
variance of the residual that they explain. The blue bars show results based on the Initial Share instrumental
variable strategy, which interacts defense spending growth with the share of military procurement spending
in state output, averaged over the first five years of the sample. The red bars show results based on the
State FE instrumental variable strategy, which interacts (placebo) defense spending growth with state fixed
effects to generate the instruments. The cross-hatched bars correspond to the optimally selected number of
factors for each strategy’s residuals, based on the information criterion in Bai and Ng (2002).

the endogenous variable, local procurement spending, as

Xsim
it = ωt + ζi + πηiS

sim
t + eit (28)

where (ωt, ζi) are estimated fixed effects, π is the estimated first-stage coefficient, and ηi is

the exposure variable.21 We similarly construct Y sim
it = αt+γi+βXsim

it +uit. Under our null

hypothesis that β = 0, this reduces to Y sim
it = Yit.

As robustness checks, we also do four additional simulations with other data-generating

processes for Xt. The first two explore the importance of autocorrelation by setting ρ = 0

and ρ = 0.9 in the Gaussian AR(1) model, holding fixed the unconditional variance of Ssim
t .

The third explores the role of leptokurtic shocks—concretely, that the military procurement

time series is characterized by a few large shocks of fast growth and draw-downs. To do this,

we model the AR(1) residual as a Gaussian mixture with two components, which can differ

in their mean and variance.22 The fourth explores the role of richer dynamics by estimating

21For the State FE strategy, these exposures are first-stage regression coefficients, and π = 1. For the
Initial Share strategy, these exposures are the observed pre-period spending shares.

22Specifically, we assume that the pdf of the innovation ξt is f(ξ) = αϕ(ξ;µ1, σ1)+(1−α)ϕ(ξ;µ2, σ2), where
ϕ(·;µ, σ) is a Gaussian pdf with mean µ and standard deviation σ and the free parameters are α ∈ (0, 1),
(µ1, µ2) ∈ R2, and (σ1, σ2) ∈ R2

+. We estimate all parameters via maximum likelihood estimation. We
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a Gaussian AR(2) process for Xt.
23

Finally, for each simulation draw, we estimate the model using two-stage least squares and

perform hypothesis tests at the 5% level for β0 = 0. We study 16 tests, which interact four

“base tests” with four different clustering strategies. The clustering strategies are: clustering

by state, clustering by year, two-way clustering, and two-way HAC clustering (L = 3).

The first two tests are based on conventional t-statistics of the form t = β̂−β0

se
, assumed to

have an asymptotic N(0, 1) distribution. We consider two standard error estimates.24 The

first, which we call seβ̂, plugs in residuals evaluated at the point estimate, ˆ̃uit = Ỹit − β̂X̃it.

The second, which we call seβ0 , plugs in residuals evaluated at the null hypothesis of interest,

ˆ̃u0
it = Ỹit − β0X̃it. As observed by Cameron and Miller (2015) and Adão et al. (2019), the

former estimator for cluster-robust standard errors may be significantly biased downwards

in small samples, and alternative estimators that impose the null hypothesis often perform

significantly better.

The second two tests are versions of the weak-instrument robust test of Anderson and

Rubin (1949) that are adapted to allow for clustering, as introduced by Finlay and Magnusson

(2009) and Magnusson (2010). The first is the “Minimum Distance” test described in those

references, which calculates a covariance matrix that conditions on the estimate β̂, in analogy

to seβ̂. We refer to this test as “AR-MD.” The second is a “Lagrange Multiplier” variant,

which calculates a covariance matrix that uses β0 in place of β̂, in analogy to seβ0 , and

potentially with similar advantageous properties for bias reduction when estimating the

clustered covariances. We refer to this test as “AR-LM.” In both cases, the test statistics

have an asymptotic χ2(nI) distribution where nI is the number of instruments. In Appendix

A.6, we give formulas for these test statistics. We also show that, in the one-dimensional case

(e.g., the Initial Share Strategy), the AR-LM test exactly coincides with the conventional

seβ0 test.

The true β for the placebo regression is zero, by construction. Thus we expect all tests

at the 5% level to falsely reject this null 5% of the time. Note that randomization inference

rejects the null 5% of the time by construction, since the placebo test uses the same simulated

shocks as randomization inference.

estimate α̂ = 0.42 and σ̂1/σ̂2 = 3.47, so there is a 42% chance of a “large shock” with 3.47 times the
volatility of the “regular shock.” This distribution has a kurtosis of 5.77 or an excess kurtosis of 2.77.

23That is, we model Xt = ρ1Xt−1 + ρ2Xt−2 + ξt where ξt ∼ N(0, σ2). We estimate ρ̂1 = 0.96 and
ρ̂2 = −0.36. The AR(2) model is selected by both the AIC and BIC as the best-fitting AR(p) model for
p ∈ {1, . . . 5}.

24In both methods, we apply Stata’s default small-sample correction to multiply the standard error es-
timate by c =

√
G(N − 1)/((G− 1)(N −K)),where G is the minimum number of clusters across the two

dimensions, N is the sample size, and K is the number of regressors (including estimated fixed effects).
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Table 2: False Rejection Rates for Placebo Test Based on Nakamura and Steinsson (2014)

Panel A: Initial Share Strategy
Conventional Weak-IV Robust
seβ̂ seβ0 AR-MD AR-LM

Cluster by State 25.4% 19.8% 27.8% 19.8%
Cluster by Year 24.4% 20.8% 28.4% 20.8%
Two-way Cluster 21.1% 9.0% 20.9% 9.0%

Two-way HAC (L = 3) 20.3% 3.0% 20.7% 3.0%
Randomization Inference 5% (By Construction)

Panel B: State FE Strategy
Conventional Weak-IV Robust
seβ̂ seβ0 AR-MD AR-LM

Cluster by State 27.0% 17.6% 100.0% 0.0%
Cluster by Year 28.8% 21.8% 94.2% 0.0%
Two-way Cluster 20.2% 6.8% 15.0% 2.6%

Two-way HAC (L = 3) 20.5% 1.4% 8.2% 2.4%
Randomization Inference 5% (By Construction)

Notes: This table shows the frequency at which the null hypothesis of β0 = 0 is rejected at the 5% level in
our placebo test based on Nakamura and Steinsson (2014). A correctly calibrated 5% test would reject 5% of
the time. Panel A shows results based on the IV that interacts defense spending growth with the pre-period
share of military procurement spending in state output. Panel B shows results based on the IV strategy that
interacts defense spending growth with state fixed effects. The first four rows of each panel show results from
tests that implement clustering by state, clustering by year, using two-way clustering (state and year), and
using two-way HAC standard errors with a kernel bandwidth of three years. In each of these rows, we report
results from conventional t-tests with standard error estimates seβ̂ and seβ0 and weak-instrument-robust
tests using the Anderson-Rubin Minimum Distance and the Anderson-Rubin Lagrange Multiplier statistics
of Finlay and Magnusson (2009) and Magnusson (2010) (see Section 4.2 for details). In Panel A, the seβ0

and AR-LM tests exactly coincide. The fifth row reports that randomization inference rejects the null 5% of
the time by construction, since the placebo test uses the same simulated shocks as randomization inference.

Results. We show our results in Table 2. We split the results into two panels corresponding

to the Initial Share Strategy and the State FE Strategy.

For both strategies, clustering on one dimension performs poorly. The preferred empirical

method in Nakamura and Steinsson (2014), clustering by state in the State FE strategy and

using seβ̂ standard errors, spuriously rejects the null hypothesis 27.0% of the time. The same

clustering strategy when applied to the Initial Share strategy spuriously rejects 25.4% of the

time. Clustering by year does not perform much better, with rejection rates of 28.8% and

24.4%, respectively. In each case, calculating standard errors that use the residuals under

the null (seβ0 standard errors) improves this false rejection modestly. These findings are

consistent with identification coming from shocks and the presence of a significant factor
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structure in the residual.

Two-way clustering performs better, particularly when combined with the standard er-

ror calculation that computes residuals under the null hypothesis. In particular, two-way

clustering with the seβ0 calculation rejects 9.0% of the time for the Initial Share strategy

and 6.8% of the time for the State FE strategy. Two-way HAC standard errors with the

seβ0 calculation slightly under -reject in each case, at 3.0% and 1.4% rates, respectively. This

drastic improvement in coverage is consistent with our reasoning in Section 3.1. The seβ̂ cal-

culation shows a similar pattern of more accurate coverage with more robust methods, but

the rejection probabilities are always larger than 20%. Our finding that using the residuals

computed under the null drastically improves performance is consistent with the findings of

Adão et al. (2019) in a different context with cluster-robust inference.

We now consider weak-instrument robust inference. For the Initial Share strategy (Panel

A), this gives consistent results to conventional, Wald-based inference. Two-way and two-

way HAC clustering perform much better than single-way clustering. And the AR-LM test,

which imposes the null hypothesis when computing the residuals, has considerably lower

rejection probabilities than the AR-MD test. As observed earlier, the AR-LM test in this

just-identified context coincides exactly with the seβ0 test.

For the State FE strategy (Panel B), weak-instrument robust methods behave erratically.

The AR-LM test substantially under-rejects the null hypothesis—strikingly, the one-way

clustered tests never reject the null hypothesis at the 5% level. The AR-MD test substantially

over-rejects the null hypothesis—strikingly, the one-way clustered tests almost always reject

the null hypothesis at the 5% level.25 This sharp difference from our results with the Initial

Share strategy is consistent with the observation that the State FE strategy relies on different,

many-instrument asymptotics.

In the Appendix, we explore the robustness of these results to the alternative data-

generating processes described above. In light of the results above, we focus on the Initial

Share strategy and on conventional inference. We present all results in Table 5. In the

simulation with ρ = 0, clustering by region continues to over-reject (21.6% with seβ̂ and

16.0% with seβ0). Clustering by year gives almost correct coverage (5.8% with seβ̂ and

3.6% with seβ0). Because our ρ = 0 simulation makes St both serially uncorrelated and

independent from the residual, the terms ignored by time-clustering (i.e., E[ZituitZjsujs]

for t ̸= s) will in fact be zero in this environment regardless of the correlation structure

25We have also replicated these results using the conditional likelihood ratio test of Moreira (2003), which
Andrews et al. (2006) show is nearly uniformly most powerful, as well as the LIML estimator. We find
similarly poor performance in the placebo test.
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for uit.
26,27 The persistent, ρ = 0.9 simulation has slightly worse coverage compared to our

baseline, consistent with the same intuition about the role of autocorrelated shocks.

The leptokurtic, normal-mixture simulation and AR(2) simulation each have similar cov-

erage to our baseline. Thus, while these simulations represent qualitatively different dynam-

ics, they have similar implications for the performance of our statistical estimators. This is

natural if, asymptotically, only second-moment properties matter for the estimators and if

the Gaussian AR(1) model captures these properties relatively well.

We draw two main conclusions from this exercise. First, cross-regional correlation in

the residuals distorts inference in both conventional and weak-instrument-robust inference,

especially when the instrument is persistent. Second, addressing this issue with two-way

clustering or two-way HAC standard errors leads to valid inference when combined with

estimators that impose the null hypothesis (i.e., the seβ0 standard errors or the AR-LM test

statistic).

As an alternative method, we suggest using randomization inference. By construction,

randomization inference will reject the null hypothesis 5% of the time in this simulation. In

the next subsection, we will show how the confidence interval in the regional fiscal multipliers

example changes under different clustering methods and under randomization inference.

4.3 Valid Confidence Intervals Include Low Multipliers

We now re-estimate the confidence intervals from Nakamura and Steinsson (2014) using all

of our methods. We show the results for 95% confidence intervals from the Initial Shares

strategy in Table 3. In the Appendix, we report 95% confidence intervals from the State FE

strategy (Table 6) as well as 90% and 68% confidence intervals for both strategies (Tables

7 and 8). We show results clustering by state (as in the original study), using two-way

clustering, using two-way HAC standard errors (with a kernel bandwidth of three years),

and using randomization inference. For each of the clustering options, we show conventional

t-statistic-based confidence intervals corresponding to each standard error estimator (seβ̂
and seβ0) and weak-instrument robust Anderson-Rubin confidence intervals corresponding to

both the minimum distance and Lagrange Multiplier statistics.28 The latter three confidence

intervals (including the seβ0 conventional interval) are constructed by looping over a grid of

26This argument uses the fact that E[ZituitZjsujs] = E[E[ZitZjs|uit, ujs]uitujs] = E[0 · uitujs] = 0. This
relies not just on uncorrelatedness of St, but uncorrelatedness conditional on the residual (itself implied by
the stronger assumption of independence in the simulation).

27In a regional-exposure study of stock-market wealth effects, Chodorow-Reich et al. (2021) argue that
combining two-way clustering with a shock variable that is nearly uncorrelated over time (national stock
returns) allays concerns about distorted inference cross-region and cross-time-period residual correlation.

28Our randomization inference interval uses a weak-instrument robust test statistic and computes residuals
under the null, so we only have one type of confidence interval to show in that row.
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Table 3: 95% Confidence Intervals for Conventional IV Estimate of Regional Fiscal Multiplier
in Nakamura and Steinsson (2014)

Point Estimate: 2.477
Conventional Weak-IV Robust

seβ̂ seβ0 AR-MD AR-LM

Cluster by State (0.583, 4.371) (0.906,∞) (0.784, 4.959) (0.906,∞)
Two-way Cluster (0.370, 4.583) (0.712,∞) (0.746, 5.440) (0.712,∞)

Two-way HAC (L = 3) (0.045, 4.909) (−∞,∞) (0.498, 5.879) (−∞,∞)
Randomization Inference (0.08, 5.34)

Notes: This table shows 95% confidence intervals for the regional fiscal multiplier, estimated in the setting
of Nakamura and Steinsson (2014) using the IV estimator. Results are based on the instrumental variable
strategy that interacts defense spending growth with the pre-period share of military procurement spending
in state output. The first three rows show results from tests that implement clustering by state, two-way
clustering (state and year), and two-way HAC standard errors with a kernel bandwidth of three years. In
each of these rows, we report results from conventional t-tests with standard error estimates seβ̂ and seβ0

and weak-instrument-robust tests using the Anderson-Rubin Minimum Distance and the Anderson-Rubin
Lagrange Multiplier statistics of Finlay and Magnusson (2009) and Magnusson (2010) (see Section 4.2 for
details). As noted in the text, the seβ0

and AR-LM tests exactly coincide. The fourth row reports results
from randomization inference.

null hypotheses and reporting the values that cannot be rejected at the 5% level using the

corresponding test. Since Nakamura and Steinsson focus on the idea that a high regional

fiscal multiplier provides evidence against a “plain-vanilla Neoclassical model,” we center

our discussion on the lower bound of each confidence interval.

Clustering strategies that account for cross-regional correlation of the residual yield

substantially wider traditional confidence intervals. For the Initial Share strategy, the

conventional confidence interval widens from (0.583, 4.371) under clustering by state to

(0.370, 4.583) under two-way clustering and (0.045, 4.909) under two-way HAC standard

errors. The confidence intervals calculated with seβ0 are substantially wider in the two-way

clustering and two-way HAC cases, which are precisely those in which the placebo test sug-

gested that this method provided better coverage. The clustering strategy with closest to

correct coverage in the placebo test, the two-way HAC confidence interval with seβ0 , cannot

rule out any value of the fiscal multiplier at the 95% level. The 90% confidence interval from

the same method rejects multipliers lower than 0.473 and the 68% confidence interval rejects

multipliers lower than 1.462.

Randomization inference yields a confidence interval of (0.08, 5.34). This is consistent

with our findings from conventional inference with more robust clustering. The same strategy

yields a 90% confidence interval of (0.46, 4.72), and a 68% confidence interval of (1.34, 3.70).

To probe the sensitivity of these results to alternative specifications of the data-generating

process for military procurement growth, we re-calculate the randomization-inference confi-
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dence intervals with the alternative data-generating processes that we fit to the data. For

the Gaussian-mixture (leptokurtic) simulation and the AR(2) simulation, we respectively

find 95% confidence intervals of (0.26, 5.10) and (0.28, 5.24). Both of these intervals are very

similar to the findings in Table 3. These results suggest that our randomization inference

results, like our placebo test results, are not unduly sensitive to the parameterization of the

data-generating process.

The dramatic expansion of confidence intervals in Table 3 illustrates the practical impor-

tance of correctly accounting for the correlation structure of the residual in a setting with

regional data. Since shares are non-randomly assigned, and since we find strong evidence of

a factor structure to the residual, clustering by state will not yield valid confidence intervals.

When we adjust the confidence intervals to allow for the factor structure of the residual, we

can no longer rule out very low fiscal multipliers at the 95% level.

This is important for the interpretation of Nakamura and Steinsson (2014), who argue

that their estimates of reasonably high fiscal multipliers provide evidence against a “plain-

vanilla” Neoclassical model of the US economy. The authors’ preferred estimate, clustering

by state in the State FE strategy, corresponds to a lower bound in the 95% confidence

interval of 0.704; the same number in the Initial Share strategy is 0.583. By contrast, at the

95% level, randomization inference cannot rule out multipliers as low as -4.4 in the State

FE strategy or 0.08 in the Initial Share strategy. This is not to suggest that this setting is

not informative about the regional fiscal multiplier. If we instead test at the 90% level, the

Initial Share strategy can rule out multipliers lower than 0.46. Rather, our analysis suggests

that accounting for the correlation structure of the residual across regions is important for

correct inference in regional settings.

State-Level vs. Division-Level Analysis. In addition to their state-level analysis,

Nakamura and Steinsson (2014) also perform a complementary analysis at the census division

level.29 In Appendix Table 9, we repeat our main empirical analysis at the division level. In

the placebo test, the division-level analysis has fairly accurate coverage with just clustering

by region, once the seβ0 confidence intervals are used. This is consistent with the intuition

that grouping regions more coarsely ameliorates concerns about cross-regional correlation in

residuals. However, the placebo test shows poor coverage properties for the seβ0 confidence

intervals when two-way and two-way HAC confidence intervals are used. This suggests that

asymptotic approximations may perform poorly when N = 10.

Turning to the actual data, the seβ0 95% confidence intervals contain the entire real line,

but the 90% intervals are informative for the state and two-way clustering. The random-

29Nakamura and Steinsson further subdivide the South Atlantic division into two groups, for a total of
ten divisions.
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ization inference confidence interval is (−0.44, 5.70) at the 95% level, and (0.38, 5.24) at the

90% level. Thus, coarser aggregation leads to lower precision in estimates.

We can further examine the relative precision of the state and division-level analysis by

comparing their power, using Algorithm 4. To do this, we simulate data under an alternative

hypothesis of βa = 1.5 (i.e., a sizable multiplier), conduct randomization inference at the

5% level, and check how often we reject the null of β0 = 0. The state-level data deliver

substantially higher statistical power. In simulation, we reject the null 32% of the time

using state-level data, compared to 14% of the time using division-level data. We view these

results, taken together, as highlighting a potential benefit of our methods: researchers can

exploit the added precision of the state-level data, while still ensuring that their confidence

intervals provide correct coverage. Of course, this leaves open the possibility that there

is some other way of combining or reweighting the state-level observations that actually

increases statistical power and, therefore, improves researchers’ ability to detect sizable

multipliers. This is the spirit of our feasible optimal instrument, which we study next.

4.4 Efficient Estimation Improves Power

We now implement efficient estimation with a feasible optimal instrument, as introduced in

Section 3.3.

Power/Size Simulation and Selection of (B, J). We begin with a simulation of power

and size, as described in Algorithm 4, to guide selection of the tuning parameters B and J .

We select our null hypothesis as β0 = 0, since ruling out low fiscal multipliers is central to

distinguishing between New Keynesian and Neoclassical models. We simulate data under

the alternative hypothesis (πa = 1, βa = 1.5), although we explore power under different

values of βa. The hypothesis of πa = 1 corresponds to a first stage in which national military

spending growth is allocated across states in exact proportion to each state’s initial share

of national military spending. We choose to focus on βa = 1.5 because it represents one

common view about the size of the fiscal multiplier in the US.

We explore power under B = 0 and B = 1.5. The former corresponds to the null

hypothesis. Therefore our test will have no size distortion (i.e., reject 5% of the time when

βa = β0 = 0). The latter corresponds to the true data-generating process under βa = 1.5 and

allows us to construct the weighting matrix with the true residuals under that alternative.

Thus, this test is likely to achieve more power to reject β0 = 0. However, tests using B = 1.5

may suffer from size distortions because the weighting matrix is stochastic under the null.

We show the results of the power simulation in Figure 2. We find very substantial power

improvements from using the optimal instrument, for two factors (J = 2) and above. For
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Figure 2: Power Simulation for Optimal Instrument
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Notes: The figure plots the probability of rejecting the null hypothesis β = 0, under simulations based on
πa = 1, and various βaindicated on the horizontal axis. Panel A (left) shows simulation results under B = 0,
and Panel B (right) shows simulation results under B = 1.5. Details of the simulation are described in
Algorithm 4. Each curve corresponds to an optimal instrument, Z∗ (B, J), where B is as indicated in the
title and J varies across the different lines. The curve for J = 0 corresponds to the original, unweighted
instrument, and is therefore the same in both plots. We bold the results for J = 0 (the unweighted case) and
J = 2 (the selected parameter). In Panel A, the power at βa = 0 is 0.05 by construction for all instruments.

βa = 1.5, the power of the test using the unweighted instrument is 0.32. When B = 0 (left

panel), the power increases to 0.68 using the optimal number of factors (J = 2). When

B = 1.5 (right panel), the power increases to 0.88 using the optimal number of factors

(J = 4). Thus, the optimal instrument can substantially increase power—by a factor of 2.13

(B = 0, J = 2) or 2.75 (B = 1.5, J = 4).

The simulation also highlights a key trade-off regarding the selection of B, which we

alluded to in Section 3.3: selecting B ̸= β0 to increase power can induce distortions in size.

This is illustrated in the right panel of Figure 2, where the power curves for B = 1.5, J > 1

lie above 0.05 at βa = 0, suggesting that these tests (incorrectly) reject the null more than

5% of the time. In contrast, the left panel shows that B = 0 tests reject exactly 5% of the

time at βa = 0. To achieve a power of 0.88 under the alternative βa = 1.5, the B = 1.5 and

J = 4 method falsely rejects a true null hypothesis (βa = β0 = 0) 21% of the time. In our

simulation, tests with fewer factors have smaller size distortions. The B = 1.5 and J = 2

test, by contrast, achieves a power improvement over the B = 0 and J = 2 test (76% vs.

68%) while still maintaining a more acceptable size at βa = 0 (9.2%).
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The simulation visualized in Figure 2 illustrates the power and size trade-offs for testing

β0 = 0. But, to construct confidence intervals, we will test many null hypotheses. Therefore,

it is also important to understand the power-size trade-off for other values of β0. We conduct

two further simulations to this end. First, we study size under different values of β0, focusing

on the J = 2 case. In Appendix Figure 3, we find that both the B = 0 and B = 1.5 methods

with J = 2 reject less than 10% of the time (in a nominal 5% test) for βa = β0 < 4. For larger

βa = β0, the advantage of B = 1.5 over B = 0 becomes more pronounced. By construction,

the test with B = β0 rejects 5% of the time in all cases.

Second, we study power to reject different values of the null hypothesis β0 under a fixed,

simulated alternative of βa = 1.5. For β0 ∈ [0, 1.5], the B = β0 test has power in-between the

B = 0 and B = 1.5 tests (and coincides with these tests at the endpoints). For β0 > 1.5, the

fixed-B tests have greater power than the B = β0 test. Moreover, the B = β0 test appears

to peak at a power of about 0.8, at β0 = 6. If the power in fact never exceeds 0.8 for any

β0, then the B = β0 test will generate infinite-width confidence intervals with at least 20%

probability. In contrast, while the unweighted instrument has lower power than the weighted

instruments for β < 6.5, it seems to have power converging to one as β0 → ∞.

Whether an infinite-width confidence interval is problematic will depend on the applica-

tion. In the fiscal multipliers application, the ability to statistically reject multipliers greater

than 5 is not very important, since these values are implausible in standard macroeconomic

theory. Over the range of economically relevant parameters, the feasible optimal instrument

substantially improves power.

Assessing these trade-offs between power and size, we implement three methods below.

The first is B = 0 and J = 2. This test achieves the highest power at βa = 1.5 among

the methods that, by construction, have the correct size at β0 = 0. The second is B = 1.5

and J = 2, which slightly improves power relative to B = 0 without greatly distorting size

at β0 = 0. The third is B = β0 and J = 2, thus varying the test statistic for every null

hypothesis. This is the most robust technique as it ensures a correct size for every tested

null hypothesis, but it is potentially less powerful.

Results. The efficient estimator yields lower point estimates for the regional fiscal multi-

plier: in contrast to the standard IV estimate of 2.477, we find 1.276 for the B = 0 method

and 1.564 for the B = 1.5 method. These optimal-instrument estimates are more in line

with standard macroeconomic theory.

Randomization inference with the efficient re-weighting tightens the 95% confidence in-

terval under B = 0 and B = 1.5. The B = β0 interval yields a confidence interval with no

upper bound. Moreover, none of the optimal-instrument methods can reject regional fiscal

multipliers as low as 0.12 at the 5% level.
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Table 4: 95% Randomization Inference Confidence Intervals for Optimal IV Estimate of
Regional Fiscal Multiplier in Nakamura and Steinsson (2014)

Point Estimate 95% CI
Unweighted 2.477 (0.08,5.34)
B = 0, J = 2 1.276 (-0.08,3.06)
B = 1.5, J = 2 1.564 (0.12,3.48)
B = β0, J = 2 — (-0.08,∞)∗

Notes: This table shows 95% confidence intervals for the regional fiscal multiplier, estimated in the setting of
Nakamura and Steinsson (2014) using efficient instruments. All results are based on the instrumental variable
strategy that interacts defense spending growth with the pre-period share of military procurement spending
in state output. The columns respectively give the point estimate and the 95% confidence interval from
randomization inference (as described in Algorithms 1 and 3). The first row corresponds to the unweighted
estimate (from Panel B of Table 3) and the next three rows to the three tests described in Section 4.4, chosen
based on their performance in a power simulation. Note that the B = β0 test has no corresponding point
estimate, since it uses different weights to test each null hypothesis. The ∗ in the fourth row indicates that
the upper end-point exceeds the largest grid point considered.

If our test is powerful, why can we not rule out low values of β? One explanation can

be seen in the changing point estimates as we move from the unweighted instrument to

the feasible optimal instrument. The difference between the point estimate and the left

end-point of the confidence interval shrinks from 2.4 in the unweighted case to 1.4 in the

B = 0 and B = 1.5 cases. Using a standard Wald test, the 95% confidence interval would

be β̂ ± 1.96 · se(β̂); if the standard error shrinks while the point estimate falls, the lower

bound of the confidence interval can remain unchanged. By analogy, our feasible optimal

instrument has higher statistical precision but yields lower point estimates. Thus the lower

bound of the confidence interval is similar ex post, despite the higher ex ante power.

5 Conclusion

Regional-exposure designs are ubiquitous in current empirical practice. Researchers use these

designs in the hopes that regional data will provide them with more credible identification

and that a greater number of observations will provide precise estimates.

We study how unobserved aggregate shocks affect regional-exposure designs. We argue

that the most plausible source of identification is the orthogonality of the observed aggre-

gate shock from unobserved aggregate shocks, and that the presence of these unobserved

shocks induces a factor structure to the model residual. We show that the standard econo-

metric practice of clustering standard errors by cross-sectional units (e.g., regions) may

understate uncertainty because it fails to account for the systematic correlations induced

by heterogeneous exposures to aggregate shocks. To remedy this issue, we propose more
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robust asymptotic methods and finite-sample-valid randomization inference. To improve

statistical power, we propose a feasible optimal instrument that reweights the data to ac-

count for units’ exposure to common shocks. In an application to the study of Nakamura

and Steinsson (2014), we show that standard confidence intervals give poor coverage, that

corrected confidence intervals give correct coverage, and that the feasible optimal instrument

substantially improves power.

We provide three recommendations for practice. First, we caution against clustering

standard errors by region. Our results show, in theory and in practice, that this method

is not robust to the presence of cross-regional correlations in model residuals and that the

associated coverage distortions can be severe. Second, we provide two options for correct

inference. One option is to use two-way clustering (with or without HAC correction), to

account for the data’s correlation structure. Alternatively, researchers can use randomization

inference, which accounts for the correlation structure of the data by modeling the shock

process. Third, we suggest a feasible optimal instrument. We find that a method based on

estimating a factor structure in the residual substantially improves power in our application.

An important issue that our paper does not address is how to correct inference with very

few time periods. The econometric issues we identify could all arise in these settings, and

may be especially severe: we show that the bias of region-clustered standard errors is pro-

portional to N/T . However, the solutions we study in this paper rely on large T : two-way

clustering requires T → ∞, and our randomization inference procedure requires estimating

the time series process that generates the shocks. A promising path is to implement ran-

domization inference with a different procedure to estimate the data-generating process for

the underlying shock, which does not rely on having many time periods. We leave further

study of small T settings to future work.
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A Omitted Proofs

A.1 Proof of Proposition 1

Proof. We start with Part 1. Here, we hold the number of time periods T fixed, while the

number of regions N → ∞. We thus have a fixed number of time fixed effects, while the

region fixed effects are nuisance parameters. Note that estimation with time and region fixed

effects is equivalent to double-demeaning the regressors and instruments. We will thus work

with the double-demeaned instruments and regressors.

First, we will prove that 1
NT

∑
i,t Z̃ituit

p→ 0. We start by proving that 1
NT

∑
i,t Zituit

p→ 0:

1

NT

∑
i,t

Zituit =
1

NT

∑
i,t

η′iSt · λ′
iFt +

1

NT

∑
i,t

η′iSt · εit

=
1

N

∑
i

1

T

∑
t

tr ((ηiλ
′
i)(FtS

′
t)) +

1

N

∑
i

1

T

∑
t

η′iSt · εit

=
1

N

∑
i

1

T
tr

(
(ηiλ

′
i)
∑
t

(FtS
′
t)

)
+

1

N

∑
i

1

T

∑
t

η′iSt · εit (29)

p→ 1

T
E

[
tr

(
(ηiλ

′
i)
∑
t

(FtS
′
t)

)]
+

1

T

∑
t

E [η′iSt · εit]

= 0

The second to last line applies the Weak Law of Large Numbers because
(
ηi, λi, (εit)

T
t=1

)
are

drawn i.i.d. across regions. The last line uses E [ηiλ
′
i] = 0 from Condition 1 and E [η′iSt · εit] =

0 from Assmption 2.

Next, we prove that 1
NT

∑
i,t Z̄iuit

p→ 0. This proceeds similarly to the above. We have:

1

NT

∑
i,t

Z̄iuit =
1

NT

∑
i,t

1

T

(∑
s

Zis

)
uit

=
1

N

∑
i,t

1

T 2
η′i

(∑
s

Ss

)
uit

=
1

N

∑
i

1

T 2
tr

(
(ηiλ

′
i)
∑
t

Ft

(∑
s

S ′
s

))
+

1

N

∑
i

1

T 2

∑
t

η′i

(∑
s

Ss

)
· εit

(30)

p→ 1

T 2
E

[
tr

(
(ηiλ

′
i)
∑
t

Ft

(∑
s

S ′
s

))]
+

1

T 2

∑
t

E

[
η′i

(∑
s

Ss

)
· εit

]
= 0
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The last line uses the same logic as the last two lines of the previous derivation.

Next, we show that 1
NT

∑
i,t

(
Z̄t − Z̄

)
uit

p→ 0. To do this, it is sufficient to show that
1
N

∑
i Z̄tuit

p→ 0 for each t. From there, since the number of time periods is fixed, we can

add up to get our desired result. We have:

1

N

∑
i

Z̄tuit =
1

N

∑
i

1

N

(∑
j

η′jSt

)
(λ′

iFt + εit)

=
1

N

∑
i

1

N

(∑
j

η′j

)
St (λ

′
iFt + εit)

=
1

N

(∑
j

ηj

)
· 1

N

∑
i

St (λ
′
iFt + εit) (31)

p→ E [ηj] · E [St (λ
′
iFt + εit)]

= 0

The second to last line uses the weak law of large numbers, and the last line uses E
[
η′j
]
= 0.

Adding up, we thus have that 1
NT

∑
i,t Z̃ituit

p→ 0.

Next, we show that there exists a finite and full rank matrixQ such that 1
NT

∑
i,t Z̃itX̃

′
it →p

Q as N → ∞. Note that, based on the assumptions we have made, (Xit, Zit) is drawn i.i.d.

across regions. We thus have Z̄t
p→ E [Zit | t], and similarly for Z̄,X̄, and X̄t. We thus have:

1

NT

∑
i,t

Z̃itX̃
′
it =

1

NT

∑
i,t

(
Zit − Z̄i − Z̄t + Z̄

) (
Xit − X̄i − X̄t + X̄

)′
p→ 1

N

∑
i

1

T

∑
t

(
Zit − Z̄i − E [Zit | t] + E [Zit]

) (
Xit − X̄i − E [Xit | t] + E [Xit]

)′
p→ E

[
1

T

∑
t

(
Zit − Z̄i − E [Zit | t] + E [Zit]

) (
Xit − X̄i − E [Xit | t] + E [Xit]

)′]
= E

[
Z̃itX̃

′
it

]
(32)

By assumption in the statement of Proposition 1, this expectation is finite and of full rank.

Finally, to show the desired result, we apply the continuous mapping theorem, relying
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on the fact that matrix inversion is continuous wherever the matrix is full rank. We have:

β̂ =

(
1

NT

∑
i,t

Z̃itX̃
′
it

)−1
1

NT

∑
i,t

Z̃itYit

=

(
1

NT

∑
i,t

Z̃itX̃
′
it

)−1
1

NT

∑
i,t

Z̃it

(
X̃ ′

itβ + uit

)

= β +

(
1

NT

∑
i,t

Z̃itX̃
′
it

)−1
1

NT

∑
i,t

Z̃ituit

p→ β + E
[
Z̃itX̃

′
it

]−1

· 0

= β

(33)

This proves the claim of Part 1.

The proof of Part 2 is analogous to the proof for Part 1, but using a law of large numbers

for stationary and strongly mixing time series rather than for i.i.d. regions. We omit this

for brevity.

A.2 Proof of Lemma 1

Proof. Using the definition of Zit, we write

ω(i, j, t, s) = E[η′iSt · λ′
iFt · η′jSs · λ′

jFs] (34)

We first show Part 1. For i ̸= j, we manipulate the inside of the expectation

ω(i, j, t, s) = E[tr(η′iSt · λ′
iFt · η′jSs · λ′

jFs)] = E[tr(ηiλ′
i · FtS

′
sηjλ

′
jFsS

′
t)] (35)

using rearrangement and the cyclic property of the trace. We observe that, due to the lin-

earity of the trace, we can write E[tr[A]] = tr[E[A]] for a real-matrix-valued random variable

A. We then use the assumed independence of (ηi, λi) from the vector (ηj, λj, Fs, Ft, Ss, St),

encapsulating independence across regions and indepence of cross-sectional from time-series

variables, to write

ω(i, j, t, s) = tr(E[ηiλ′
i · FtS

′
sηjλ

′
jFsS

′
t)) = tr(E[ηiλ′

i] · E[FtS
′
sηjλ

′
jFsS

′
t]) (36)

We then use the identification from shares condition to observe that E[ηiλ′
i] is a K×J matrix

of zeros, and hence ω(i, j, t, s) = 0.
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We next show Part 2. We manipulate terms to write

ω(i, j, t, s) = E[η′i(StF
′
t)λi · η′j(SsF

′
s)λj)] (37)

We now condition down on the values of (λi, λj, ηi, ηj) to write

ω(i, j, t, s) = E[η′i(E[StF
′
t |λi, λj, ηi, ηj])λi · η′j(E[SsF

′
s|λi, λj, ηi, ηj])λj)] (38)

where we observe that E[StF
′
t |λi, λj, ηi, ηj] = E[StF

′
t ] = 0 due to the assumed conditional

independence and the identification from shocks condition; similarly, E[SsF
′
s|λi, λj, ηi, ηj] =

E[SsF
′
s] = 0. Hence, in these cases, ω(i, j, t, s) = 0. This proves Lemma 1 as stated.

We now show, additionally, that the zero covariances in Lemma 1 are consistently esti-

mated. In particular:

Lemma 2. Let ω̃ (i, j, t, s) = E
[
Z̃it · λ̃′

iF̃t · Z̃js · λ̃′
jF̃s

]
be the demeaned-factor-component

covariance between units (i, t) and (j, s), using the double-demeaned instrument. If Assump-

tions 1 and 2 hold, then

1. If identification comes from shares (Condition 1) and (ηi, λi) is independent across

regions, then ω̃ (i, j, t, s) = O(1/N2) for all i ̸= j.

2. If identification comes from shocks (Condition 2) and (St, Ft) is independent across

time, then ω̃ (i, j, t, s) = O(1/T 2) for all t ̸= s.

Proof. To prove this, we first observe that the double-demeaned instrument is

Z̃it = Zit − Z̄i − Z̄t + Z̄

= η′iSt − η′iS̄ − η̄′St + η′iSt

= (ηi − η̄)′
(
St − S̄

)
− η̄′S̄ + η′iSt

= (ηi − η̄)′
(
St − S̄

) (39)

where η̄′S̄ = η′iSt because we have assumed a balanced panel. We will define η̃i := ηi − η̄

and S̃t := St − S̄. Note that an identical argument shows that ũit − ε̃it = λ̃′
iF̃t.

To prove case two, we re-write ω̃ as

ω̃(i, j, t, s) = E[η̃′iS̃t · λ̃′
iF̃t · η̃′jS̃s · λ̃′

jF̃s] (40)

We can rewrite the above as a sum. Let k and k′ index entries of the observed shock, S, and
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let l and l′ index entries of the unobserved factor shock, F . We then have:

ω̃(i, j, t, s) =
∑
k

∑
k′

∑
l

∑
l′

E
[
η̃ki S̃

k
t λ̃

l
iF̃

l
t η̃

k′

j S̃
k′

s λ̃l′

j F̃
l′

s

]
=
∑
k

∑
k′

∑
l

∑
l′

E
[
S̃k
t F̃

l
t S̃

k′

s F̃ l′

s

]
· E
[
η̃ki λ̃

l
iη̃

k′

j λ̃
l′

j

]
(41)

=
∑
k

∑
k′

∑
l

∑
l′

E
[(
Sk
t − S̄k

) (
Sk′

s − S̄k′
) (

F l
t − F̄ l

) (
F l′

s − F̄ l′
)]

· E
[
η̃ki λ̃

l
iη̃

k′

j λ̃
l′

j

]
where the second line uses the assumed independence of cross-sectional and time-series vari-

ables.

We then consider the case where t ̸= s. We first observe that E
[
Sk
t0
Sk′
t1
F l
t2
F l′
t3

]
= 0 if

t0 ̸= t1 or t2 ̸= t3. To show this, we consider all the relevant cases. We observe that

for any r ̸= t, E
[
Sk
t S

k′
s F l

tF
l′
r

]
= E[Sk

sF
l′
r ]E[Sk

t F
l
t ] = 0, since (Sk

sF
l′
r ) is independent from

(Sk
t F

l
t ) E[Sk

t F
l
t ] = 0. Next, for r ̸= t and for w ̸= r, we observe that E

[
Sk
t S

k′
r F l

wF
l′
w

]
=

E[Sk
t F

l
wF

l′
w ]E[Sk′

r ] = 0, since (Sk
r ) is independent from (Sk

t , F
l
w, F

l′
w) and E[Sk′

r ] = 0. Next, for

r ̸= t, we observe that E
[
Sk
t S

k′
r F l

rF
l′
r

]
= E[Sk′

r F l
rF

l′
r ]E[Sk′

t ] = 0, since (Sk
t ) is independent

from (Sk
t , F

l
t , F

l′
t ) and E[Sk

t ] = 0. Finally, analogous arguments apply to show the same when

F and S are switched.

We now apply this rule, as well as the iid nature of draws across time, to simplify further:

E
[(

Sk
t S

k′

s − Sk
t S̄

k′ − S̄kSk′

s + S̄kS̄k′
)(

F l
tF

l′

s − F l
t F̄

l′ − F̄ lF l′

s + F̄ lF̄ l′
)]

= E
[(

−Sk
t S̄

k′ − S̄kSk′

s + S̄kS̄k′
)(

−F l
t F̄

l′ − F̄ lF l′

s + F̄ lF̄ l′
)]

= E

[
2

T 2
Sk
t S

k′

t F l
tF

l′

t +
2

T 2
Sk
t S

k′

t F l
sF

l′

s − 2

T 3
Sk
t S

k′

t

T∑
w=1

F l
wF

l′

w− (42)

2

T 3
F l
tF

l′

t

T∑
r=1

Sk
rS

k′

r +
1

T 4

(
T∑

r=1

Sk
rS

k′

r

)(
T∑

w=1

F l
wF

l′

w

)]
=:

1

T 2
M0(T, k, k

′, l, l′)

where we define M0(T, k, k
′, l, l′) in the last line. We next observe that |M0(T, k, k

′, l, l′)| <
M̄0 < ∞, for all T and (k, k′, l, l′), for some constant M̄0 that does not depend on T or the

indices, because of our assumption of bounded moments. We also define M1(N, k, k′, l, l′) =

E
[
η̃ki λ̃

l
iη̃

k′
j λ̃

l′
j

]
and similarly observe that |M1(N, k, k′, l, l′)| < M̄1, for all N and (k, k′, l, l′),

because of bounded moments.
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This allows us to write, for t ̸= s

ω̃(i, j, t, s) =
∑

k,k′,l,l′

[
E
[(

Sk
t S

k′

s − Sk
t S̄

k′ − S̄kSk′

s + S̄kS̄k′
)(

F l
tF

l′

s − F l
t F̄

l′ − F̄ lF l′

s + F̄ lF̄ l′
)]

·E
[
η̃ki λ̃

l
iη̃

k′

j λ̃
l′

j

]]
=

1

T 2

∑
k,k′,l,l′

M0(T, k, k
′, l, l′)M1(N, k, k′, l, l′)

(43)

and to moreover observe that |ω̃(i, j, t, s)| < 1
T 2J

2K2M̄0M̄1. Therefore, ω̃(i, j, t, s) is O(1/T 2)

for t ̸= s.

The proof of case one is analogous, and we omit it for brevity.

A.3 Proof of Proposition 2

Proof. We first show that V̂ CR →p V CR. The clustered estimator for the asymptotic variance

is V̂ CR = Q̂−1Ω̂CR
(
Q̂′
)−1

, where

Q̂ =
1

NT

∑
i,t

Z̃itX̃
′
it and Ω̂CR =

1

N

∑
i

[(
1

T

∑
t

Z̃itûit

)(
1

T

∑
t

Z̃itûit

)′]
(44)

and where ûit := Ỹit − X̃ ′
itβ̂. We have already shown that Q̂

p→ E
[
Z̃itX̃

′
it

]
in the proof of

Proposition 1.

We thus need to prove that Ω̂CR p→ Ω. To do this, we will break Ω̂CR out into its

components, and then use a law of large numbers argument to show that it converges. We

have:

Ω̂CR =
1

N

∑
i
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1

T

∑
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Z̃itûit

)(
1

T

∑
t

Z̃itûit

)′]

=
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Z̃it
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Ỹit − X̃ ′

itβ̂
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Z̃it
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itβ̂
))′]

=
1

N

1

T 2

∑
i

[(∑
t

Z̃itỸit

)(∑
t

Z̃itỸit

)′

−

(∑
t

Z̃itỸit

)(∑
t

Z̃itX̃
′
itβ̂

)

−

(∑
t

Z̃itX̃
′
itβ̂

)(∑
t

Z̃itỸit

)′

+

(∑
t

Z̃itX̃
′
itβ̂

)(∑
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Z̃itX̃
′
itβ̂

)′]
(45)

Given our assumption of finite fourth moments, we can guarantee that the expectation of
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each of these components will be finite. This, combined with out previous arguments about

the data being i.i.d. across regions, will let us use the law of large numbers so that each

component converges to its expectation. Finally, adding in the previously proven fact that

β̂
p→ β, this tells us that Ω̂CR p→ E

[(
1
T

∑
t Z̃itũit

)(
1
T

∑
t Z̃itũit

)′]
..

We next show that AV AR
(√

N · β̂
)
= V CR. It is sufficient to show that ΩCR = Ω. We

note that

Ω = AVAR

(
1√
N

· 1
T

∑
i,t

Z̃itũit

)

= lim
N→∞

1

NT 2
E

[(∑
i,t

Z̃itũit

)(∑
i,t

Z̃itũit

)′]
(46)

= lim
N→∞

1

NT 2
E

[∑
i,t

∑
j,s

Z̃itũitZ̃jsũjs

]

To simplify this, we first consider terms where i ̸= j. We have:

E
[
Z̃itũitZ̃jsũjs

]
= E

[(
λ̃′
iF̃t + ε̃it

)(
λ̃′
jF̃s + ε̃js

)(
η̃′iS̃t

)(
η̃′jS̃s

)]
(47)

We first observe that E[ε̃itλ̃′
jF̃sZ̃itZ̃js] = E[ε̃it]E[λ̃′

jF̃sZ̃itZ̃js] = 0 because εit is i.i.d.

across regions, mean zero, and independent from the factor draws and shocks. Similarly,

E[λ̃′
iF̃tε̃jsZ̃itZ̃js] = 0. We thus have

E
[
Z̃itũitZ̃jsũjs

]
= E

[
λ̃′
iF̃tλ̃

′
jF̃s

(
η̃′iS̃t

)(
η̃′jS̃s

)
+ ε̃itε̃js

(
η̃′iS̃t

)(
η̃′jS̃s

)]
= ω̃ (i, j, t, s) + E

[
ε̃itε̃js

(
η̃′iS̃t

)(
η̃′jS̃s

)]
We know, from Lemma 2, that ω̃ (i, j, t, s) = O

(
1
N2

)
. We also know E

[
ε̃itε̃js

(
η̃′iS̃t

)(
η̃′jS̃s

)]
is O

(
1
N2

)
, from the proof of Proposition 4. Using this, we further simplify:
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Ω = lim
N→∞

1

NT 2
E

[∑
i,t

∑
j,s

Z̃itũitZ̃jsũjs

]

= lim
N→∞

1

NT 2
E

[∑
i,t

∑
j,s

1 (i = j) Z̃itũitZ̃jsũjs +
∑
i,t

∑
j,s

1 (i ̸= j)O(1/N2)

]

= lim
N→∞

[
1

NT 2
E

[∑
i,t

∑
j,s

1 (i = j) Z̃itũitZ̃jsũjs

]
+

1

NT 2
T 2N(N − 1)O(1/N2)

]

= lim
N→∞

1

NT 2
E

[∑
i,t

∑
j,s

1 (i = j) Z̃itũitZ̃jsũjs

]

= E

[(
1

T

∑
t

Z̃itũit

)(
1

T

∑
t

Z̃itũit

)′]
= ΩCR

(48)

where the second step uses our result that E
[
Z̃itũitZ̃jsũjs

]
is O

(
1
N2

)
for i ̸= j, the second

to last step uses the Law of Large Numbers, and the last step is the definition of ΩCR.

A.4 Proof of Proposition 3

Proof. Recall that Ω := AVAR
(

1√
N
· 1
T

∑
i,t Z̃itũit

)
, in the limit where N → ∞. This implies

that

Ω = lim
N→∞

1

NT 2
E

[(∑
i,t

Z̃itũit

)(∑
i,t

Z̃itũit

)′]
= lim

N→∞

1

NT 2
E

[∑
i,t

∑
j,s

Z̃itũitZ̃jsũjs

]
(49)

In contrast,

ΩCR := E

[(
1

T

∑
t

Z̃itũit

)(
1

T

∑
t

Z̃ituit

)′]
=

1

NT 2
E

[∑
i,t

∑
j,s

1 (i = j) Z̃itũitZ̃jsũjs

]
(50)

Taking the difference between the two, pre-multiplying by 1
N
, and taking the limit as
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N → ∞, we can write

lim
N→∞

1

N

(
ΩCR − Ω

)
= − lim

N→∞

1

N2T 2

∑
i,t

∑
j,s

1 (i ̸= j)E
[
Z̃itũitZ̃jsũjs

]
= − lim

N→∞

1

N2T 2

∑
i,t

∑
j,s

1 (i ̸= j)E
[
Z̃it(λ̃

′
iF̃t + ε̃it)Z̃js(λ̃

′
jF̃s + ε̃js)

]
= − lim

N→∞

1

N2T 2

∑
i,t

∑
j,s

1 (i ̸= j)E
[
Z̃itλ̃

′
iF̃tZ̃jsλ̃

′
jF̃s + Z̃itλ̃

′
iF̃tZ̃jsε̃js+

Z̃itε̃itZ̃jsλ̃
′
jF̃s + Z̃itε̃itZ̃jsε̃js

]
(51)

For all (i, t, j, s), E[Z̃itλ̃
′
iF̃tZ̃jsε̃js] = E[Z̃itλ̃

′
iF̃tZ̃js]E[ε̃js] = 0, where the first equality uses the

fact that ε is independent of (Z, λ, F ) and the second equality uses E[ε̃js] = 0. Similarly, for

all (i, t, j, s), E[Z̃itε̃itZ̃jsλ̃
′
jF̃s] = 0. Thus,

lim
N→∞

1

N

(
ΩCR − Ω

)
= lim

N→∞
− 1

N2T 2

∑
i,t

∑
j,s

1 (i ̸= j)E
[
Z̃itλ̃

′
iF̃tZ̃jsλ̃

′
jF̃s + Z̃itε̃itZ̃jsε̃js

]
(52)

We start by considering the second term. We show that this term is zero. First, we observe

that E
[
Z̃itε̃itZ̃jsε̃js

]
= E

[
Z̃itZ̃js

]
E [ε̃itε̃js] because ε is independent of (Z, λ, F ). Next,∣∣∣E [Z̃itZ̃js

]∣∣∣ < C < ∞ because of the bounded moments of Z. Therefore

∣∣∣∣∣ limN→∞

1

N2T 2

∑
i,t,j,s

1 (i ̸= j)E
[
Z̃itε̃itZ̃jsε̃js

]∣∣∣∣∣ < lim
N→∞

C
1

N2T 2

∑
i,t,j,s

1 (i ̸= j) |E [ε̃itε̃js]|

= lim
N→∞

C
1

T 2

∑
s,t

|E [ε̃itε̃js]|

= C
1

T 2

∑
s,t

lim
N→∞

|E [ε̃itε̃js]|

= C
1

T 2

∑
s,t

lim
N→∞

∣∣∣E[(εit − ε̄i − ε̄t + ε̄)

(εjt − ε̄j − ε̄s + ε̄)
]∣∣∣

= C
1

T 2

∑
s,t

|E [(εit − ε̄i)(εjt − ε̄j)]| = 0

(53)

where the second line uses the exchangeability of units (i, j), the third line exchanges the

limit and the (finite) sum, the fourth line writes out the definition of ε̃it, the fifth line uses

the fact that means across cross-sectional units go to zero, and the last equality uses the fact
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that ε are drawn independently across cross-sectional units.

We therefore have

lim
N→∞

1

N

(
ΩCR − Ω

)
= lim

N→∞
− 1

N2T 2

∑
i,t

∑
j,s

1 (i ̸= j)E
[
Z̃itλ̃

′
iF̃tZ̃jsλ̃

′
jF̃s

]
(54)

We now apply Lemma 2 to observe that, if t ̸= s, then E
[
Z̃itλ̃

′
iF̃tZ̃jsλ̃

′
jF̃s

]
= O(1/T 2) <

M
T 2 < ∞, if t ̸= s. We therefore write

lim
N→∞

1

N

(
ΩCR − Ω

)
= lim

N→∞
− 1

N2T 2

∑
i,t

∑
j,s

(
1 (i ̸= j, t = s)E

[
Z̃itλ̃

′
iF̃tZ̃jsλ̃

′
jF̃s

]
+ 1 (i ̸= j, t ̸= s)O(1/T 2)

)
= lim

N→∞
− 1

N2T 2

∑
i,t

∑
j,s

(
1 (i ̸= j, t = s)E

[
Z̃itλ̃

′
iF̃tZ̃jsλ̃

′
jF̃s

])
− lim

N→∞

N (N − 1)T (T − 1)

N2T 2
·O(1/T 2)

= lim
N→∞

− 1

N2T 2

∑
i,t

∑
j,s

(
1 (i ̸= j, t = s)E

[
Z̃itλ̃

′
iF̃tZ̃jsλ̃

′
jF̃s

])
−O(1/T 2)

(55)

We then substitute in Z̃it = η̃i
′S̃t and simplify

lim
N→∞

1

N

(
ΩCR − Ω

)
+O(1/T 2) = lim

N→∞
− 1

N2T 2

∑
i,t

∑
j

1 (i ̸= j)E
[
η̃′iS̃tλ̃

′
iF̃tη̃

′
jS̃tλ̃

′
jF̃t

]
= lim

N→∞
− 1

N2T 2

∑
i,t

∑
j

1 (i ̸= j)E
[
E
[
η̃′iS̃tλ̃

′
iF̃tη

′
jS̃tλ̃

′
jF̃t | F̃t, S̃t

]]
= lim

N→∞
− 1

N2T 2

∑
i,t

∑
j

1 (i ̸= j)E
[
S̃ ′
tE
[
η̃iλ̃

′
i

]
F̃tS̃

′
tE
[
η̃jλ̃

′
j

]
F̃t

]
(56)

where, in the second line, we condition on F̃t, S̃t and, in the third line, we exploit the

independence across regions. We finally simplify this expression further using the fact that

regions are exchangeable, that F̃t, S̃t are i.i.d. across time periods, and that η̃ and λ̃ converge
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to η and λ as N → ∞:

lim
N→∞

1

N

(
ΩCR − Ω

)
= lim

N→∞
−N(N − 1)

N2T 2

∑
t

E
[
S̃ ′
tE
[
η̃iλ̃

′
i

]
F̃tS̃

′
tE
[
η̃jλ̃

′
j

]
F̃t

]
−O(1/T 2)

= − 1

T 2

∑
t

E
[
S̃ ′
tE [ηiλ

′
i] F̃tS̃

′
tE
[
ηjλ

′
j

]
F̃t

]
−O(1/T 2)

= − 1

T
E
[
(S̃ ′

tE [ηiλ
′
i] F̃t)

2
]
−O(1/T 2)

(57)

as desired.

Under the scalar case, this simplifies to:

lim
N→∞

1

N

(
ΩCR − Ω

)
= − 1

T

(
E[η̃iλ̃i]

)2
E
[(

S̃tF̃t

)2]
−O(1/T 2) (58)

A.5 Proof of Proposition 4

Proof. First, note that

Ω := AV AR
(√

N · β̂
)
= lim

N→∞,T→∞,N/T→C

1

NT 2

∑
i,t

∑
j,s

E
[
ũitũjsZ̃itZ̃js

]
(59)

Let B denote the above infinite sum, subsetting to the terms for which i ̸= j and t ̸= s. It

suffices to show that B = 0. We have:

B = lim
N→∞,T→∞,N/T→C

1

NT 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

1 (i ̸= j AND t ̸= s)E[ũitũjsZ̃itZ̃js] (60)

Using our definitions of u and Z, we re-write the terms in the expectation as

ũitũjsZ̃itZ̃js = (λ̃′
iF̃t + ε̃it)(λ̃

′
jF̃s + ε̃js)(η̃

′
iS̃t)(η̃

′
jS̃s) (61)

We first observe that E[ε̃itλ̃′
jF̃sZ̃itZ̃js] = E[ε̃it]E[λ̃′

jF̃sZ̃itZ̃js] = 0 because εit is i.i.d. across re-

gions, mean zero, and independent from the factor draws and shocks. Similarly, E[λ̃′
iF̃tε̃jsZ̃itZ̃js] =

0.
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We now study the sum of the terms E[ε̃itε̃jsZ̃itZ̃js], or

B1 := lim
N→∞,T→∞,N/T→C

1

NT 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

1 (i ̸= j AND t ̸= s)E[ε̃itε̃jsZ̃itZ̃js] (62)

We now show that B1 = 0. Our calculation is similar to the equivalent calculation in the

proof of Proposition 3. We first observe that E
[
Z̃itε̃itZ̃jsε̃js

]
= E

[
Z̃itZ̃js

]
E [ε̃itε̃js] because

ε is independent of (Z, λ, F ). We focus first on E [ε̃itε̃js]

E [ε̃itε̃js] = E [(εit − ε̄i − ε̄t + ε̄)(εjs − ε̄j − ε̄s + ε̄)]

= E

[
4

NT
ε2is −

2

N
εitεis +

1

NT

T∑
s=1

εitεis −
2

NT 2

T∑
s=1

T∑
r=1

εirεis+

1

N2

N∑
k=1

εksεkt −
2

N2T

N∑
k=1

T∑
r=1

εktεkr +
1

N2T 2

N∑
i=1

T∑
s=1

T∑
r=1

εirεis

]

=
4

NT
E
[
ε2is
]
− 2

N
E [εitεis] +

1

NT

T∑
s=1

E [εitεis]−
2

NT 2

T∑
s=1

T∑
r=1

E [εirεis] +

1

N2

N∑
k=1

E [εksεkt]−
2

N2T

N∑
k=1

T∑
r=1

E [εktεkr] +
1

N2T 2

N∑
i=1

T∑
s=1

T∑
r=1

E [εirεis]

= O

(
1

N

)

(63)

where we expand terms in the second line, simplify in the third, and use the boundedness of

moments in the fourth. We next consider E
[
Z̃itZ̃js

]
. We have:

E
[
Z̃itZ̃js

]
= E

[
η̃′iS̃tη̃

′
jS̃s

]
= E

[
S̃ ′
tη̃iη̃

′
jS̃s

]
= tr

(
E
[
η̃iη̃

′
jS̃sS̃

′
t

])
= tr

(
E
[
η̃iη̃

′
j

]
E
[
S̃sS̃

′
t

])
(64)

We proceed by analyzing cases. In case one, we have independent draws of ηi across
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regions, which yields.

E
[
η̃iη̃

′
j

]
= E

[
(ηi − η̄) (ηj − η̄)′

]
= E

[
−ηiη̄

′ − η̄η′j + η̄η̄′
]

= E

[
− 1

N
ηiη

′
i −

1

N
ηjη

′
j +

1

N2

∑
ι

ηιη
′
ι

]

= E
[
− 1

N
ηiη

′
i

]
= O

(
1

N

)
=⇒ E

[
Z̃itZ̃js

]
= O

(
1

N

)

(65)

where the fourth line uses the fact that ηi and ηj are drawn from the same distribution. Case

two is analogous, and yields E
[
Z̃itZ̃js

]
= O

(
1
T

)
. We thus have that E

[
Z̃itε̃itZ̃jsε̃js

]
isO

(
1
N2

)
in case one, and O

(
1

NT

)
in case two. In either case, we can write that E

[
Z̃itε̃itZ̃jsε̃js

]
=

O
(

1
N2 +

1
NT

)
.

We now have:

B1 = lim
N→∞,T→∞,N/T→C

(
1

NT 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

1 (i ̸= j AND t ̸= s)O

(
1

N2
+

1

NT

))

= lim
N→∞,T→∞,N/T→C

(
1

NT 2
N (N − 1)T (T − 1)O

(
1

N2
+

1

NT

))
= lim

N→∞,T→∞,N/T→C
O

(
1

N
+

1

T

)
= 0

(66)

Therefore, we can drop the εit terms, and re-write Equation 60 as

B = lim
N→∞,T→∞,N/T→C

1

NT 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

1 (i ̸= j AND t ̸= s) · ω̃(i, j, t, s) (67)

We first observe, using Lemma 2, that ω̃(i, j, t, s) = O(1/N2) in case one and ω̃(i, j, t, s) =

O(1/T 2) in case two. We observe that B can therefore be written under either case as

B = lim
N→∞,T→∞,N/T→C

1

NT 2
N (N − 1)T (T − 1)O

(
1

N2
+

1

T 2

)
= lim

N→∞,T→∞,N/T→C
N ·O

(
1

N2
+

1

T 2

)
(68)

= 0
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where the last line uses the fact that N
T

→ C. Thus, since B = 0, it follows that Ω =

ΩTWC .

A.6 Formulas for Weak-Instrument Robust Tests

In this Appendix, we provide expressions for the two weak-instrument robust test statistics

that we study in Section 4. These are the “Anderson-Rubin Minimum Distance” (AR-

MD) and “Anderson-Rubin Lagrange Multiplier” (AR-LM) tests introduced in Finlay and

Magnusson (2009) and Magnusson (2010) and implemented in the weakiv command of Stata.

To introduce these statistics, we first remind the reader of our two model equations (in

double-demeaned form):

Ỹit = X̃ ′
itβ + ũit (69)

X̃it = Z̃ ′
itπ + ẽit (70)

In contrast to our baseline model, we let Z̃it by an nI × 1 vector and π be a nI × 1 vector.

We also introduce the “reduced form” model that directly relates Ỹ and Z̃:

Ỹit = δ · Z̃it + ṽit (71)

We observe that the OLS estimate of this equation is δ̂ = (Z̃ ′Z̃)−1Z̃ ′Y . In the scalar

instrument case, this is related to the OLS estimates of the original model equations by

δ̂ = π̂β̂.

We next define some objects from Finlay and Magnusson (2009). The first is the asymp-

totic covariance matrix of
√
N
[
(δ̂ − δ)′, (π̂ − π)′

]
, where N is the appropriate asymptotic

normalization. We write an estimator of this object as

Λ̂(δ, π) =

[
Λ̂δ,δ(δ, π) Λ̂δ,π(δ, π)

Λ̂π,δ(δ, π) Λ̂π,π(δ, π)

]
(72)

which, in a way that we will soon clarify, depends on parameters δ, π. We next define the

object Ψ̂(β, δ, π) which is an estimator of the asymptotic coviarance matrix of
√
N(δ̂− π̂β):

Ψ̂(β, δ, π) = Λ̂δδ(δ, π)− βΛ̂δ,π(δ, π)− βΛ̂π,δ(δ, π) + β2Λ̂π,π(δ, π) (73)

We finally define the estimators in Λ̂. Λ̂δδ(δ, π) and Λ̂ππ(δ, π) are the corresponding cluster-

robust variance estimators for δ̂ and π̂, with the residuals (ṽit and ẽit, respectively) computed
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under the null of δ and π. In the one-way clustering case, these are

Λ̂δ,δ(δ, π) = (Z̃ ′Z̃)−1

(∑
c

Z̃ ′
c(Ỹc − δZ̃c)(Ỹ − δZ̃c)

′Z̃c

)
(Z̃ ′Z̃)−1

Λ̂π,π(δ, π) = (Z̃ ′Z̃)−1

(∑
c

Z̃ ′
c(X̃c − πZ̃c)(X̃ − πZ̃c)

′Z̃c

)
(Z̃ ′Z̃)−1

(74)

where each object in the summation is the vector of the corresponding variable in cluster

c. These objects are defined analogously for multi-way clustering, The covariance terms are

defined as

Λ̂δ,π(δ, π) = (Z̃ ′Z̃)−1

(∑
c

Z̃ ′
c(Ỹc − δZ̃c)(X̃ − πZ̃c)

′Z̃c

)
(Z̃ ′Z̃)−1

Λ̂π,δ(δ, π) = (Z̃ ′Z̃)−1

(∑
c

Z̃ ′
c(X̃c − πZ̃c)(Ỹ − δZ̃c)

′Z̃c

)
(Z̃ ′Z̃)−1

(75)

We now define the estimators. The AR-MD statistic is

ARMD = N(δ̂ − π̂β0)
′(Ψ̂(β0, δ̂, π̂))

−1(δ̂ − π̂β0) (76)

and observe from Finlay and Magnusson (2009) and Magnusson (2010) that this follows a

χ2(nI) distribution. The AR-LM statistic, by contrast, replaces the middle covariance with

the same evaluated at δ = π̂β0:

ARLM = N(δ̂ − π̂β0)
′(Ψ̂(β0, π̂β0, π̂))

−1(δ̂ − π̂β0) (77)

Equivalence with seβ0in One-Dimensional Case. We now show that the AR-LM test

coincides with the conventional test with the test statistic

τβ0 =
(
β̂ − β0

)′
(Varβ0)

−1
(
β̂ − β0

)
(78)

in the just-identified, one-dimensional case, where Varβ0 is the estimated variance of β̂,

computed using the residuals under β0. To do this, we will show that

Ψ̂(β0, π̂β0, π̂) = Nπ̂Varβ0 π̂
′ (79)

We show (79) in the case of single-variable clustering; the calculation is analogous for

multi-way clustering (or multi-way HAC), by expressing those covariance estimators as the

weighted sum of one-dimensional clustering estimators.
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We first simplify

Ψ̂(β, δ, π) = (Z̃ ′Z̃)−1

(∑
c

Z̃ ′
cWcZ̃c

)
(Z̃ ′Z̃)−1 (80)

where
Wc = (Ỹc − δZ̃c)(Ỹ − δZ̃c)

′

− β(Ỹc − δZ̃c)(X̃ − πZ̃c)
′ − β(X̃c − πZ̃c)(Ỹ − δZ̃c)

′

+ β2(X̃c − πZ̃c)(X̃ − πZ̃c)
′

(81)

Next, we complete the square to write Wc = V ′
cVc where

Vc = Ỹc − δZ̃c − β(X̃c − πZ̃c) = Ỹc − βX̃c + βπZ̃c − δZ̃c (82)

Evaluating this at β = β0, π = π̂, and δ = π̂β0 we obtain Vc = Ỹc − β0X̃c. Therefore, we

have

Ψ̂(β, δ, π) = (Z̃ ′Z̃)−1

(∑
c

Z̃ ′
c(Ỹc − β0X̃c)(Ỹc − β0X̃c)

′Z̃c

)
(Z̃ ′Z̃)−1 (83)

We next use the fact that π̂ = (Z̃ ′Z̃)−1Z̃ ′X̃ and the definition

Varβ0 =
1

N
(Z̃ ′X̃)−1

(∑
c

Z̃ ′
c(Ỹc − β0X̃c)(Ỹc − β0X̃c)

′Z̃c

)
(X̃ ′Z̃)−1 (84)

to write

Ψ̂(β, δ, π) = π̂(Z̃ ′X̃)−1

(∑
c

Z̃ ′
c(Ỹc − β0X̃c)(Ỹc − β0X̃c)

′Z̃c

)
(X̃ ′Z̃)−1π̂′

= Nπ̂Varβ0 π̂
′

(85)

as desired. Note that, since we are in a scalar environment, we have β̂ = δ̂/π̂. It then follows

that:

ARLM = N(δ̂ − π̂β0)
′(Nπ̂Varβ0 π̂

′)−1(δ̂ − π̂β0)

= (β̂ − β0)
′(Varβ0)

−1(β̂ − β0) (86)

= τβ0
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B Additional Tables and Figures

Figure 3: Level Simulation for Optimal Instrument
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Notes: The figure plots the probability of rejecting the null hypothesis β = β0 in simulations that impose
this null hypothesis as correct (βa = β0), varying the value of βa = β0. The blue, solid line corresponds to
the test with B = 0 and J = 2. The red, dashed line corresponds to the test with B = 1.5 and J = 2. The
purple dotted line corresponds to the test with B = β0 and J = 2, which by construction has level 5%.

Figure 4: Power to Reject Incorrect Nulls for Optimal Instrument
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Notes: The figure plots the probability of rejecting the null hypothesis β = β0 in simulations that impose
βa = 1.5, varying the value of β0. At β0 = 1.5, this corresponds to the level of the test and should be
nominally 5%. The blue, solid line corresponds to the test with B = 0 and J = 2. The red, dashed line
corresponds to the test with B = 1.5 and J = 2. The purple dotted line corresponds to the test with B = β0

and J = 2. The yellow dashed-and-dotted line corresponds to the test with the unweighted instrument.
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Table 6: 95% Confidence Intervals for Conventional IV Estimate of Regional Fiscal Multiplier
in Nakamura and Steinsson (2014) (State FE Strategy)

Point Estimate: 1.426
Conventional Weak-IV Robust

seβ̂ seβ0 AR-MD AR-LM

Cluster by State (0.704, 2.149) (0.76, 2.75) Empty (−∞,∞)
Two-way Cluster (0.324, 2.528) (0.40,∞) (−∞,∞)∗ (−∞,∞)∗

Two-way HAC (L = 3) (0.032, 2.821) (−∞,∞) (−∞,∞)∗† (−∞,∞)∗

Randomization Inference (−4.4, 8.5)

Notes: This table shows 95% confidence intervals for the regional fiscal multiplier, estimated in the setting
of Nakamura and Steinsson (2014) using the IV estimator. Results are based on the instrumental variable
strategy that interacts defense spending growth with state fixed effects. The first three rows show results from
tests that implement clustering by state, two-way clustering (state and year), and two-way HAC standard
errors with a kernel bandwidth of three years. In each of these rows, we report results from conventional
t-tests with standard error estimates seβ̂ and seβ0 and weak-instrument-robust tests using the Anderson-
Rubin Minimum Distance and the Anderson-Rubin Lagrange Multiplier statistics of Finlay and Magnusson
(2009) and Magnusson (2010) (see Section 4.2 for details). The fifth row reports results from randomization
inference.
∗: All of the weak-instrument-robust confidence intervals marked with this symbol contain “small holes”
(i.e., intervals of width < 0.05 in which one can reject the null hypothesis).
†: The confidence interval marked with this symbol contains a “large hole” that excludes (0.012, 0.347).

Table 5: Placebo Test with Alternative Data-Generating Processes

Panel A: Panel B: Panel C: Panel D: Panel E:

Baseline IID Persistent Mixture AR(2)

seβ̂ seβ0 seβ̂ seβ0 seβ̂ seβ0 seβ̂ seβ0 seβ̂ seβ0

Cluster by State 25.4% 19.8% 21.6% 16.0% 27.0% 19.3% 21.8% 12.8% 21.8% 19.0%

Cluster by Year 24.4% 20.8% 5.8% 3.6% 28.2% 29.2% 24.6% 22.0% 22.8% 19.6%

Two-way Cluster 21.1% 9.0% 11.9% 3.8% 22.2% 11.5% 16.9% 7.0% 18.2% 8.6%

Two-way HAC 20.3% 3.0% 15.6% 2.7% 19.8% 3.5% 16.2% 2.0% 16.8% 2.2%

Notes: This table shows the frequency at which the null hypothesis of β0 = 0 is rejected at the 5% level in
several variants of the placebo test based on Nakamura and Steinsson (2014). Panel A corresponds to the
baseline simulation. In Panel B, we simulate national defense spending shocks as an IID Gaussian variable
with the same variance as observed shocks. In Panel C, we simulate national defense spending shocks as
an Gaussian AR(1) with coefficient 0.9, holding fixed the variance of the variable. In Panel D, we simulate
national defense spending shocks as an AR(1) with an empirically estimated coefficient ρ = ρ̂ = 0.66 and
innovations whose distribution is a mixture of two Gaussian distributions. In Panel E, we simulate national
defense spending shocks as an AR(2) process with Gaussian innovations. Since the placebo defense spending
shocks are drawn at random for each placebo draw, a correctly calibrated 5% test would reject 5% of the
time.
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Table 7: 90% Confidence Intervals for Conventional IV Estimate of Regional Fiscal Multiplier
in Nakamura and Steinsson (2014)

Panel A: Initial Share (Point Estimate: 2.477)
Conventional Weak-IV Robust

seβ̂ seβ0 AR-MD AR-LM

Cluster by State (0.887, 4.066) (1.171,∞) (1.044, 4.433) (1.171,∞)
Two-way Cluster (0.709, 4.245) (1.095,∞) (0.982, 4.794) (1.095,∞)

Two-way HAC (L = 3) (0.436, 4.518) (0.473,∞) (0.767, 5.136) (0.473,∞)
Randomization Inference (0.46, 4.72)

Panel B: State FE (Point Estimate: 1.426)
Conventional Weak-IV Robust

seβ̂ seβ0 AR-MD AR-LM

Cluster by State (0.820, 2.032) (0.88, 2.36) Empty (−∞,∞)
Two-way Cluster (0.502, 2.351) (0.63, 5.15) (−∞, 0.985)∪ (−∞,∞)∗

(1.467,∞)
Two-way HAC (L = 3) (0.256, 2.597) (0.18,∞) (−∞, 0.014)∪ (−∞,∞)∗

(0.361, 1.562)∪
(1.731,∞)

Randomization Inference (−3.3, 7.1)

Notes: This table shows 90% confidence intervals for the regional fiscal multiplier, estimated in the setting
of Nakamura and Steinsson (2014) using the IV estimator. Panel A shows results based on the instrumental
variable strategy that interacts defense spending growth with the pre-period share of military procurement
spending in state output. Panel B shows results based on the instrumental variable strategy that interacts
defense spending growth with state fixed effects. The first three rows of each panel show results from tests
that implement clustering by state, two-way clustering (state and year), and two-way HAC standard errors
with a kernel bandwidth of three years. In each of these rows, we report results from conventional t-tests
with standard error estimates seβ̂ and seβ0

and weak-instrument-robust tests using the Anderson-Rubin

Minimum Distance and the Anderson-Rubin Lagrange Multiplier statistics of Finlay and Magnusson (2009)
and Magnusson (2010) (see Section 4.2 for details). In Panel A, the seβ0

and AR-LM tests exactly coincide.
The fifth row of each panel reports results from randomization inference.
∗: All of the weak-instrument-robust confidence intervals marked with this symbol contain “small holes”
(i.e., intervals of width < 0.05 in which one can reject the null hypothesis).
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Table 8: 68% Confidence Intervals for Conventional IV Estimate of Regional Fiscal Multiplier
in Nakamura and Steinsson (2014)

Panel A: Initial Share (Point Estimate: 2.477)
Conventional Weak-IV Robust

seβ̂ seβ0 AR-MD AR-LM

Cluster by State (1.516, 3.438) (1.664, 3.860) (1.587, 3.544) (1.664, 3.860)
Two-way Cluster (1.408, 3.546) (1.624, 4.443) (1.522, 3.715) (1.624, 4.443)

Two-way HAC (L = 3) (1.243, 3.711) (1.462,∞) (1.384, 3.906) (1.462,∞)
Randomization Inference (1.34, 3.70)

Panel B: State FE (Point Estimate: 1.426)
Conventional Weak-IV Robust

seβ̂ seβ0 AR-MD AR-LM

Cluster by State (1.060, 1.793) (1.10, 1.87) Empty (−∞,∞)
Two-way Cluster (0.867, 1.985) (0.96, 2.31) (−∞, 0.989)∪ (−∞,∞)∗

(1.514,∞)
Two-way HAC (L = 3) (0.719, 2.134) (0.84.2.82) (−∞, 0.016)∪ (−∞,∞)∗

(0.380, 1.565)∪
(1.741,∞)

Randomization Inference (−1.3, 5.1)

Notes: This table shows 68% confidence intervals for the regional fiscal multiplier, estimated in the setting
of Nakamura and Steinsson (2014) using the IV estimator. Panel A shows results based on the instrumental
variable strategy that interacts defense spending growth with the pre-period share of military procurement
spending in state output. Panel B shows results based on the instrumental variable strategy that interacts
defense spending growth with state fixed effects. The first three rows of each panel show results from tests
that implement clustering by state, two-way clustering (state and year), and two-way HAC standard errors
with a kernel bandwidth of three years. In each of these rows, we report results from conventional t-tests
with standard error estimates seβ̂ and seβ0

and weak-instrument-robust tests using the Anderson-Rubin

Minimum Distance and the Anderson-Rubin Lagrange Multiplier statistics of Finlay and Magnusson (2009)
and Magnusson (2010) (see Section 4.2 for details). In Panel A, the seβ0

and AR-LM tests exactly coincide.
The fifth row of each panel reports results from randomization inference.
∗: All of the weak-instrument-robust confidence intervals marked with this symbol contain “small holes”
(i.e., intervals of width < 0.05 in which one can reject the null hypothesis).
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Table 9: The Regional Fiscal Multiplier at the Census-Division Level

Panel A: Placebo Test
Conventional Weak-IV Robust

seβ̂ seβ0 AR-MD AR-LM

Cluster by State 24.4% 3.2% 24.0% 3.2%
Cluster by Year 20.6% 17.0% 23.4% 17.0%
Two-way Cluster 17.4% 0.0% 18.4% 0.0%

Two-way HAC (L = 3) 18.4% 0.0% 16.7% 0.0%
Randomization Inference 5% (By Construction)

Panel B: 95% Confidence Intervals (Point Estimate: 2.750)
Conventional Weak-IV Robust

seβ̂ seβ0 AR-MD AR-LM

Cluster by State (1.235, 4.265) (−∞,∞) (1.444, 4.639) (−∞,∞)
Two-way Cluster (1.440, 4.060) (−∞,∞) (1.653, 4.393) (−∞,∞)

Two-way HAC (L = 3) (1.880, 3.619) (−∞,∞) (1.959, 3.729) (−∞,∞)
Randomization Inference (−0.44, 5.70)

Panel C: 90% Confidence Intervals (Point Estimate: 2.750)
Conventional Weak-IV Robust

seβ̂ seβ0 AR-MD AR-LM

Cluster by State (1.478, 4.021) (1.053,∞) (1.634, 4.274) (1.053,∞)
Two-way Cluster (1.651, 3.849) (1.177,∞) (1.803, 4.076) (1.177,∞)

Two-way HAC (L = 3) (2.020, 3.480) (−∞,∞) (2.080, 3.554) (−∞,∞)
Randomization Inference (0.38, 5.24)

Notes: This table collects our analysis of Nakamura and Steinsson (2014) at the level of 10 regions, which
correspond to US Census Divisions (except for the South Atlantic Division, which the authors divide in
two). These estimates correspond to the Initial Share Strategy. Panel A shows results from a Placebo Test,
conducted as described in Section 4.2 and Table 2. Panels B and C shows 95% and 90% confidence intervals
in the data. The first three rows of each panel show results from tests that implement clustering by state,
two-way clustering (state and year), and two-way HAC standard errors with a kernel bandwidth of three
years. In each of these rows, we report results from conventional t-tests with standard error estimates seβ̂
and seβ0

and weak-instrument-robust tests using the Anderson-Rubin Minimum Distance and the Anderson-
Rubin Lagrange Multiplier statistics of Finlay and Magnusson (2009) and Magnusson (2010) (see Section 4.2
for details). In Panel A, the seβ0 and AR-LM tests exactly coincide. The fifth row reports that randomization
inference rejects the null 5% of the time by construction, since the placebo test uses the same simulated
shocks as randomization inference.
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