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Abstract

This paper studies how innovation reacts to climate change and shapes its economic impacts,
focusing on US agriculture. We show in a model that directed innovation can either mitigate or
exacerbate climate change’s potential economic damage depending on the substitutability between
new technology and favorable climatic conditions. To empirically investigate the technological
response to climate change, we measure crop-specific exposure to damaging extreme temperatures
and crop-specific innovation embodied in new variety releases and patents. We find that innovation
has re-directed since the mid 20th century toward crops with increasing exposure to extreme
temperatures. Moreover, this effect is driven by types of agricultural technology most related
to environmental adaptation. We next show that US counties’ exposure to induced innovation
significantly dampens the local economic damage from extreme temperatures. Combining these
estimates with the model, we find that directed innovation has offset 20% of potential losses in US
agricultural land value due to damaging climate trends since 1960, and that innovation could offset
13% of projected damage by 2100. These findings highlight the vital importance, but incomplete
effectiveness, of endogenous technological change as a source of adaptation to climate change.
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1 Introduction

This paper studies how technological progress, possibly the most important engine for productivity
growth in human history, responds to climate change, possibly the biggest looming threat to produc-
tivity growth in the near future. Our area of focus is US agriculture, where both forces have had
tangible effects in recent times. The last century has witnessed transformative progress in agricultural
biotechnology, evidenced by an explosion of private-sector research spending and the emergence of
now ubiquitous high-yielding plant varieties. The same period has also seen rising temperatures
dramatically alter agricultural productivity (Lobell and Field, 2007; Schlenker and Roberts, 2009;
Lobell et al., 2011). Yet little is known about how the pace and focus of agricultural innovation has
shifted in response to temperature change or shaped the economic consequences of an increasingly ex-
treme environment. Understanding the process by which technological solutions emerge in response
to changing and increasingly extreme temperature patterns is essential for assessing economic re-
silience to global warming, which will continue over the 21st century even under optimistic scenarios
for reducing greenhouse gas concentrations.

Historically, innovation has been a critical part of the American agricultural sector’s response to
new environmental challenges. Olmstead and Rhode (2008, 2011) describe how biological innovation
fueled the early expansion of US agriculture, and historians acknowledge the importance of novel
hybrid seeds for withstanding early 20th century droughts (Crow, 1998; Sutch, 2008, 2011). Today,
agricultural biotechnology firms employ a similar narrative to promote their investments in climate-
resistant technology. The most prominent item on Syngenta’s website reads “Helping farmers. Fighting
climate change.” and links to a “growth plan” that promotes, among other goals, developing new
innovations for “making agriculture more resilient” in the face of climate change’s “existential threat”
(Figure A1). The sustainability chief of Monsanto, quoted in a 2017 news article, emphasized that
“making sure our products can withstand extreme weather” is a top priority to meet growing “demand
for seeds that can thrive [in] more extreme environments” (Gupta, 2017).

This paper empirically investigates how technological progress has reacted to modern temperature
change and shaped its economic impact in the US agricultural sector. We answer two specific
questions. First, has innovation re-directed toward crops most exposed to climate distress and the
technologies most suited to boosting climatic resilience? Second, how has any shift in the direction
of innovation affected the agricultural sector’s resilience to climate extremes? We use our answers to
quantify the extent to which technology has mitigated the economic damage of climate change in the
past and to project future damages after accounting for endogenous technological change.

We begin with a theoretical model that describes how climate change might shift market incen-
tives for innovation, and in turn how directed innovation might shape the economic effects of climate
change. We model equilibrium in a single market (e.g., the agricultural sector) with spatially hetero-
geneous production, centralized technology development by a profit-maximizing monopolist, and
a climate shock that reduces aggregate production possibilities. Our results convey the economic
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logic by which directed innovation could either mitigate or exacerbate aggregate climate damage
depending on underlying features of technology and demand. If technological advances substitute for
favorable climatic conditions on average—for example, by making crops increasingly heat and drought
resistant—then equilibrium technology development unambiguously increases in response to climate
distress and reduces the economic impact of a worsening climate. Higher prices for distressed crops
intensify this mechanism in general equilibrium. Conversely, if technological advances complement
favorable climatic conditions on average—for example, by increasing average yields at the cost of
making environmental requirements more exact—then directed innovation can exacerbate climate
damages. Profit incentives guide innovators away from propping up “ecological losers” and toward
pushing forward “ecological winners,” consistent with the intuition that innovation concentrates in
the largest, most productive sectors (e.g., Schmookler, 1966).

To determine the role of technological progress in shaping the economic consequences of climate
change, it is therefore essential to turn to the data. The first part of our empirical analysis compares
technology development since 1960 across crops that have experienced different productivity shocks
due to changing temperature realizations. To measure temperature-induced productivity shocks, we
start with county-level data on daily temperature realizations. We combine these data with expert-
elicited estimates of the maximum growing temperature for individual plant species from the UN
Food and Agriculture Organization’s EcoCrop database to measure the potential exposure of a given
plant to extreme heat in a given location over a specific period of time.1 Focusing on temperature
extremes is consistent with the literature following Schlenker and Roberts (2009) that identifies the
increased likelihood of extreme heat as the dominant channel through which climate change affects
staple-crop yields, as well as similar findings across a larger panel of crops in our county-level data.2
Finally, we average local crop-specific extreme-heat exposure over each crop’s planting locations in
a pre-analysis period to obtain a given crop’s aggregate exposure to extreme heat. The change in
this measure over time is our measure of exposure to damaging temperature change. The cross-crop
variation in this measure, and hence the identification of parameters in our empirical design, derives
from interacting the essentially random variation in the geography of warming across the US with
pre-determined differences in both crops’ planting locations and physiology.

To measure innovation, we compile comprehensive data of all for-sale plant varieties and their time
of introduction from the USDA’s Variety Name List, obtained via a Freedom of Information Act (FOIA)
request. This measure has the benefits of (i) an unambiguous mapping to our productivity shocks,
which are measured at the crop level, and (ii) homogeneous coverage over a period of heterogeneous
intellectual property rights for plant biotechnology (Moscona, 2021). We complement the Variety Name

1EcoCrop is frequently used in research at the intersection of agronomics and climate change to estimate crop-specific
climate tolerance (see, for instance, Hĳmans et al., 2001; Ramirez-Villegas et al., 2013; Kim et al., 2018).

2Recent developments in agricultural science identify, as a physiological mechanism, that temperature directly damages
plant tissue via heat stress, hinders plant photosynthesis, and induces water stress. See, for more details, studies by Lobell
et al. (2013) and Schauberger et al. (2017). In Online Appendix D, we document that extreme-heat exposure as we measure it
has large, negative effects on crop yields, and explains a large share of the overall impact of temperatures on crop production.
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List with two additional data sources. A database of all Plant Variety Protection (PVP) certificates, a
weak form of intellectual property protection for seeds introduced in 1970, allow us to replicate our
main findings on an independently collected dataset and investigate more detailed characteristics of
inventors. A database of crop-specific patents in agricultural patent classes allow us to study effects
outside of biotechnology and explore the characteristics of inventions.

Our first main result is that biotechnology development since 1960, measured by new variety
releases in the Variety Name List, has been directed toward crops that have become more exposed to
extreme heat over time. The mean crop in our sample sees about a 20% increase in variety development
caused by changing extreme-heat exposure. This result is robust to controlling for crop-level proxies
for market size, pre-period trends in innovation, and pre-period climatic characteristics. The result is
quantitatively similar when the outcome is measured using the PVP certificate data. Using a decadal
panel-data model, we find that the largest effects of extreme temperatures on innovation appear
within the decade, with some lagged effects and no evidence of anticipation.

We next probe the mechanisms that underpin the baseline finding by studying its heterogeneity
across crops, types of inventor, and types of invention. First, we find that the elasticity of innovation
to extreme-heat exposure is higher for more widely planted crops, but find limited evidence that it
differs across natural instruments for price elasticity or ease of crop switching. Next, using the PVP
certificate data that record the developer of each variety, we find that the redirection of technology
is stronger in the private sector than in the public sector. This is consistent with our theoretical
model based on profit incentives and with narrative evidence emphasizing the importance of private
biotechnology firms for adaptive innovation. Finally, using the patent data, we find that increased
extreme-temperature exposure predicts a higher number and share of patents that directly mention
keywords related to climate change, heat, and drought. By contrast, there is no significant relationship
with patents that do not mention these keywords. These results suggest that climate change does not
uniformly induce all types of agricultural innovation, for instance through a channel of raising crop
prices and demand for all inputs, but instead more precisely induces innovation related to adaptation
for hotter and drier conditions.

We also explore alternative channels for the effect of the climate on agricultural innovation. We
first show that, conditional on changes in extreme-heat exposure, changes in extreme-cold exposure
have no discernible effect on innovation and changes in drought exposure measured by the Palmer
Drought Severity Index (PDSI) have an imprecise and comparatively small effect. The latter result
is consistent with findings in the agronomic literature that extreme heat is itself an important cause
of water stress (e.g., Lobell et al., 2014). Next, using data on changes in planting patterns over time,
we find (i) that the extent of observed crop switching does not attenuate the relationship between
temperature change and innovation and (ii) that temperature-induced expansions in total planted area
have an independent positive effect on technology development. Finally, using international data on
hourly temperature realizations and planting patterns, we find that trends in non-US extreme-heat

3



exposure have essentially no relationship with either trends in our US measure or the direction of US
innovation. This result reminds that adaptive innovation in the US may not translate to addressing
climatic threats elsewhere in the world.

Having established the direction of technology’s response to temperature change, we turn next
toward quantifying the extent to which technology has mitigated temperature changes’ economic
harms. Previous studies have tried to identify overall adaptation to climate change by comparing
short and long-run responses of economic outcomes to temperature change (Dell et al., 2012; Burke
and Emerick, 2016). By contrast, we use a different approach based on locations’ exposure to directed
innovation. We measure both (i) a county-level measure of local extreme-heat exposure, taking into
account both its temperature realizations and the temperature sensitivity of its crop mix, as well as
(ii) a county-level measure of innovation exposure, the extreme-heat exposure of the county’s crop
mix across all other counties growing each crop. The previous set of findings on the re-direction of
technology documented that counties with higher innovation exposure have more climate-induced
technology at their disposal. Our regression model, derived from the theory, allows innovation
exposure to affect the sensitivity of local agricultural outcomes to county-level extreme-heat exposure
via an interaction term. Our interest is whether more innovation-exposed counties have a significantly
greater or smaller sensitivity of local agricultural outcomes to extreme heat.

We find that higher innovation exposure significantly mutes the negative effect of extreme heat
on agricultural land values. The effect of an additional crop-specific degree-day of extreme heat per
year is a -0.010 percent decrease in land value if a county’s crop composition has the (area-weighted)
median exposure to innovation, compared with -0.003 percent at the 75th percentile of the same
distribution and -0.015 percent at the 25th percentile. The results are very similar using agricultural
revenues and profits, rather than land values, as the outcome variable, and they are robust to directly
controlling for changes in output prices and county-level average temperatures. Finally, the results
are strongest in counties that cultivate crops with larger national market size, consistent with our
previous finding that those crops also had a stronger innovative response to extreme temperatures.

The last part of the paper studies how much of the aggregate economic damage from climate
change has been mitigated by innovation. We show how a special case of the model allows us to
estimate the counterfactuals of interest directly from our empirical panel data model. The counter-
factual also has the following more heuristic interpretation: a world without innovation holds the
heat-to-damage relationship constant, while a world with innovation sees this relationship “flatten”
in proportion to induced innovation. Our baseline estimate is that innovation has mitigated 19.9%
(95% confidence interval: 15.3% to 24.5%) of the potential economic damage from temperature change
in agriculture over the last 50 years. We show that this result is not overly sensitive to alternative
assumptions about resource constraints for research investment and about crop switching. Quantita-
tively, the economic damage mitigated by technology development amounts to about $24 billion in
current USD or 1.7% of total US agricultural land value.
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We repeat the same analysis for future climate scenarios in order to estimate the extent to which
climate damages over the 21st century might be dampened by technological progress. Our projections
use the model ensemble method of Rasmussen et al. (2016), which averages the predictions of a
number of leading climate models that are forced by the same standardized pathway for greenhouse
gas concentrations (the IPCC’s Representative Concentration Pathways). Under the model ensemble
forecast forced by RCP 4.5, an intermediate scenario, innovation mitigates 15.1% of damage by 2050
(95% CI: 9.8% to 20.5%) and 13.0% by 2100 (95% CI: 7.6% to 18.5%). These savings correspond,
respectively, to $218 billion and $1.05 trillion current USD (assuming 3% annual inflation), and to 1.9%
and 2.8% of all agricultural land value in the respective forecasts. These sums, while economically
significant, are far from suggesting that technology is capable of absorbing all the risks associated
with climate change, even in a wealthy and research-intensive country.

Our study on the role of technology for adapting to climate damage contributes to a large literature
about directed technological change and the environment. While existing work has mostly focused
on endogenous development of low-emission or “clean” technology (Newell et al., 1999; Popp, 2002,
2004; Acemoglu et al., 2012, 2016; Aghion et al., 2016), we focus instead on the role of innovation
in mitigating climate damage.3 In this vein, Miao and Popp (2014) studies the innovative response
to natural disasters across countries and Miao (2020) studies how insurance mediates the innovative
response to modern droughts. Also related is work by one of the authors (Moscona, 2022), who
investigates technology’s response to the Dust Bowl, a natural disaster that ravaged the US Great Plains
in the 1930s, and finds that crops planted in areas hit harder by Dust Bowl erosion were the focus of
more innovation, measured using variety releases, patenting activity, and research articles. He argues
that this re-direction of technological progress mediated the Dust Bowl’s economic consequences and
contributed to the early 20th-century rise of US agricultural biotechnology. Our results, interpreted
alongside these findings, show that innovation responds to modern climate change, a highly impactful
but slow-moving phenomenon, and quantitatively shed light on the potential for innovation to mediate
present and future climate damage.

Existing work studying adaptation to climate change has focused on the theoretical benefits of
reallocating production across space. Costinot et al. (2016), Rising and Devineni (2020), and Sloat
et al. (2020) study these questions for agricultural crop choice.4 Our approach, by contrast, focuses
on the response of production technology itself, in theory and in practice.

Finally, there has been a long-standing interest in the impact of temperature change on the agri-
cultural sector. Mendelsohn et al. (1994), Schlenker et al. (2005), Schlenker et al. (2006), Deschênes
and Greenstone (2007) and Fisher et al. (2012) estimate reduced-form relationships between changing
temperatures on agricultural economic outcomes. Several studies, focusing on specific crops, inves-
tigate fluctuations in the relationship between extreme heat and yields in order to infer the potential

3A strand of the general literature on directed technological change studies the conditions under which factor scarcity
encourages innovation, in theory (Acemoglu, 2010) and in practice (Hanlon, 2015). We revisit this connection in Section 2.3.

4Desmet and Rossi-Hansberg (2015), Alvarez and Rossi-Hansberg (2021), and Conte et al. (2020) study production
reallocation in response to climate change in multi-sector models.
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importance of adaptation.5 Our study takes the broader, sector-wide view of the first set of papers
while using crop-specific variation to measure the adaptive response of innovation. In so doing, we
also extend a classic literature on the role of innovation in shaping US agricultural productivity and
overcoming ecological barriers (e.g., Griliches, 1957; Hayami and Ruttan, 1970; Olmstead and Rhode,
1993, 2008) to the study of modern climate change.

The rest of the paper is organized as follows. Section 2 describes a theoretical model that guides
measurement and interpretation of results. Section 3 describes data and measurement. Sections 4
and 5 present our main results on directed innovation and the downstream impact of temperature
change and technological progress. Section 6 quantifies the aggregate effects of innovation. Section 7
concludes.

2 Model

In this section we present a model in which agricultural technology endogenously responds to pro-
ductivity shocks induced by climate change. Our main results describe primitive conditions on
production technology and equilibrium price responses under which technology development (i)
increases or decreases in response to climate damage and (ii) increases or decreases the resilience
of agricultural production to climate shocks. We preview these results using heuristic language in
Figure 1. This section’s theoretical results fill in the logic of these results and structure our subsequent
empirical analysis and quantification. All detailed derivations and proofs are in Appendix B.

2.1 Set-up

There are two goods, an agricultural crop and a numeraire. The crop is produced by a unit measure of
farms indexed by 𝑖 ∈ [0, 1]. Each farm has a productivity 𝐴𝑖 ∈ [𝐴, 𝐴], which describes the location’s
suitability for crop production and has cumulative distribution function 𝐹 across locations.

There is a single crop-specific technology in our model (e.g., improved seed varieties). Each farm
uses𝑇𝑖 ∈ R+ of this input. The input’s productivity in location 𝑖 depends on an endogenous, aggregate
state variable 𝜃 ∈ R+ summarizing technological advancement, and the local productivity 𝐴𝑖 . The
farm maximizes profits, taking as given crop price 𝑝 and technology price 𝑞, and using the following
production function:

𝑌𝑖 = 𝛼−𝛼(1 − 𝛼)−1𝐺(𝐴𝑖 , 𝜃)𝛼𝑇1−𝛼
𝑖 (2.1)

in which 𝛼 ∈ [0, 1] parameterizes the relative importance of the technological input (and the nor-
malization 𝛼−𝛼(1 − 𝛼)−1 is for convenience); and 𝐺 : R2 → R+ captures the productivity of the

5See, for example, Roberts and Schlenker (2010), Roberts and Schlenker (2011), Lobell et al. (2014), Burke and Emerick
(2016), and Keane and Neal (2020), who study corn and soybeans. Auffhammer and Schlenker (2014) reviews the related
literature on this topic for agricultural economics. A different literature in agronomics and geography, including Rodima-
Taylor et al. (2012) and Zilberman et al. (2018), has highlighted the potential for adaptation through new technology but not
been able to quantify its effects.
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Figure 1: Summary of Model Cases

Price	Effects	
Weak

(b)	Innovation	↓	and	
Resilience	↑	

Price	Effects	
Strong

(c)	Innovation	↑	and	
Resilience	↓

In	a	sector	damaged	by	climate	change…

Climate-Substitute	Technology Climate-Complement	Technology

(a)	Innovation	↑	and	
Resilience	↑

technological input as a function of the climate and quality of the technology. We assume that 𝐺 is
concave in 𝜃, twice continuously differentiable, and satisfies 𝐺1 ≥ 0 and 𝐺2 ≥ 0 so that more 𝐴𝑖 and 𝜃

increase production. It would be straightforward to add other factors of production, like mechanical
inputs, labor, or different types of improved seeds, as long as (2.1) represented the production function
conditional on these choices. This simple and specific production function allows us to focus on the
economic mechanisms of interest and derive equilibrium comparative statics.

The solution of each farm’s profit maximization problem gives the technology demand function

𝑇𝑖 = 𝛼−1𝑝
1
𝛼 𝑞−

1
𝛼𝐺(𝐴𝑖 , 𝜃) (2.2)

which is isoelastic in the input price and linear in 𝐺(𝐴𝑖 , 𝜃).
A representative innovator determines both the price of the technological input (𝑞) and the quality

of technology (𝜃). They face a marginal production cost 1−𝛼 for the input and a convex, differentiable
quality development cost 𝐶 : R+ → R+, satisfying d

d𝜃𝐶(0) = 0. Because technology demand is
isoelastic, and we have made a convenient normalization for marginal costs, the optimal technological
input price is 𝑞 = 1. Thus, the innovator’s choice of quality can be re-stated more simply as the
following maximization of aggregate technology demand over quality 𝜃:

max
𝜃

𝑝
1
𝛼

∫
𝐺(𝐴, 𝜃)d𝐹(𝐴) − 𝐶(𝜃) (2.3)

To close the model, we assume that demand for each of the goods is represented by a (crop-specific)
inverse demand function 𝑝 = 𝑃(𝑌), where 𝑌 =

∫
𝑌𝑖(𝐴)d𝐹(𝐴) is total production, and 𝑃 : R+ → R+ is

continuous and non-increasing. We therefore define equilibrium in terms of aggregates as a tuple of
technology levels, prices, and total production (𝑝, 𝜃, 𝑌) such that farms and technologists optimize
and the output price lies along the aforementioned demand curve.

The focus of our analysis will be comparative statics when varying the productivity distribution.
We equate the “climate” with the productivity distribution across space 𝐹, which in the background
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might depend on both temperature realizations and plant biology. We define damaging climate change
as a shift from distribution 𝐹 to 𝐹′ such that the former first-order stochastic dominates the latter.
Under our normalization of 𝐺1 ≥ 0, this definition is sufficient for damaging climate change to reduce
aggregate production of each crop holding fixed all other inputs and technology.

2.2 The Climate Substitutability of Technology

To structure our results, we introduce two cases for the relationship between technology and the
climate in the farm’s production function:

Definition 1 (Climate Substitutability of Technology). Technological advances are climate substitutes if
𝐺12 ≤ 0 and climate complements if 𝐺12 ≥ 0.

Technological advances are climate substitutes if they reduce the marginal impact of climatic con-
ditions on output. For example, this case is natural if the technological frontier is to develop less
heat or drought sensitive crops that remain productive even in harsher environments. On the other
hand, technological advances are climate complements if they increase the marginal impact of climatic
conditions on output. This is the case, for example, if improved biotechnology is more finely tuned
to a particular set of ecological conditions and therefore less tolerant to fluctuations.6

2.3 Theoretical Results

2.3.1 The Equilibrium Direction of Innovation

Our first result shows how, in a small open economy case of the model which fixes the crop price at
𝑝 > 0, the direction of technological change hinges on the climate substitutability of innovation:

Proposition 1 (Direction of Technology: Fixed Prices). Assume that prices are fixed, or 𝑃(𝑌) ≡ 𝑝. If the
climate shifts in a damaging way,

1. 𝜃 weakly increases in equilibrium if technology is a climate substitute.

2. 𝜃 weakly decreases in equilibrium if technology is a climate complement.

The direction of technological change in the model depends on whether farmers are more or less
willing to pay for technological improvements in the new, poorer climate. In the climate substitutes
case, farmers are more willing to pay for technological improvements in the poorer climate because
such improvements are more useful; in the climate complements case, the opposite is true. Note that
in both cases the partial-equilibrium (i.e., fixed 𝜃) effect of the damaging climate shock on production
and technological input demand is negative. Thus, the climate substitutes case allows innovation to

6Lobell et al. (2014) describe such an idea as a “general notion that as farmers become more adept at removing all
non-water constraints to crop production, the sensitivity to drought generally increases” (p. 519). See Morgan et al. (2014)
for a discussion and example of this idea in harvester technology.
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concentrate in a “shrinking” market because the market nonetheless becomes more receptive on the
margin to technological improvement.7 The climate complements case, on the other hand, embodies
the idea that the smaller market may also be less receptive to new technology.8

We now allow for price adjustment. A damaging climate shock, holding fixed technology and
inputs, creates crop scarcity and increases prices. This is, from the farmers’ perspective, a price hedge
against the negative shock. It also increases the value marginal product of technology and hence
the marginal return to improvement from the innovator’s perspective. In an endogenous technology
equilibrium, this leads to a technology hedge against the shock that operates on top of the considerations
in Proposition 1. We formalize that this force confirms the sign prediction for technology under the
substitutes case and possibly over-turns the prediction under the complements case:

Proposition 2 (Direction of Technology: Flexible Prices). Assume equilibrium quantities lie along a
non-increasing demand curve, or 𝑝 = 𝑃(𝑌) for a non-increasing 𝑃(·). If the climate shifts in a damaging way,

1. 𝜃 weakly increases if technology is a climate substitute.

2. 𝜃 may increase or decrease if technology is a climate complement.

2.3.2 Innovation and Resilience

The previous results described when technology development increased or decreased in response to
climate damage. We now describe the related but subtly different conditions under which directed
technology decreases or increases the sensitivity of production to further climatic shifts.

To this end, we first define Π(𝐴, 𝑝, �̂�) as the equilibrium profits or land rents of a farm with
productivity 𝐴when the price is 𝑝 and the technology level is �̂� and 𝑅(𝐴, 𝑝, �̂�), or “Resilience,” as the
negative of profits’ sensitivity to the weather:

𝑅(𝐴, 𝑝, �̂�) = − 𝜕

𝜕𝐴
Π(𝐴, 𝑝, �̂�) (2.4)

When Resilience increases, the same climate shock has a smaller absolute-value effect on profits. A
similar definition is introduced by Lobell (2014) as the “adaptation” attributable to a new production
technology. Our result signs the change in Resilience between equilibria as a function of the model
case.

Corollary 1 (Resilience). Consider the general environment of Proposition 2 and a damaging climate shift
which moves equilibrium technology from 𝜃 to 𝜃′. Then the following properties hold for all (𝐴, 𝑝):

1. 𝑅(𝐴, 𝑝, 𝜃′) ≥ 𝑅(𝐴, 𝑝, 𝜃) if technology is a climate substitute.

2. 𝑅(𝐴, 𝑝, 𝜃′) ≥ 𝑅(𝐴, 𝑝, 𝜃) if technology is a climate complement and 𝜃′ ≤ 𝜃.

7A similar logic underlies the case in which labor scarcity encourages innovation in Acemoglu (2010).
8In Acemoglu (2002), the positive relationship between the fixed factor and amount of innovation is interpreted as a

“market size effect.” These results are driven by an assumed complementarity between the fixed factor and new technologies.
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3. 𝑅(𝐴, 𝑝, 𝜃′) ≤ 𝑅(𝐴, 𝑝, 𝜃) if technology is a climate complement and 𝜃′ ≥ 𝜃.

The climate-substituting case features a feedback loop between a negative climate shock increasing
the marginal product of technology and expanding technology decreasing the marginal effects of
climate shocks. New technology “substitutes” for the climate in production and renders the latter
less important on the margin.

The climate-complementing case is more complicated due to the potential misalignment of
marginal product effects and the direction of innovation. If technology contracts because price effects
are weak, directed innovation magnifies the average effect of climate change on the agricultural econ-
omy but reduces the marginal effects. The regress of technology (e.g., “downgrading” high-yielding
seeds to something more weather-robust) is like reducing a complementary input to the climate, and
therefore also makes production less sensitive to the climate. If technology expands due to strong
price effects, however, the opposite is true. New technology is more productive on average and thus
reduces the level of climate damage; however, it is also more sensitive to climate stress and thus in-
creases the marginal effect of damaging climate shifts on agricultural production. This result would
be consistent with the field-level study of Lobell et al. (2014), which shows increasing sensitivity of
corn yields to drought conditions over time in Iowa, Illinois, and Indiana.

This result emphasizes that fully understanding the role of innovation as a mediating force for
climate damage requires independently measuring both the redirection of technology and the induced
change in resilience. In other words, neither a mitigating response of directly-measured innovation
nor a pattern of increased resilience fully identifies a model case in Figure 1, which is the level of
precision required for quantifying the effect of directed innovation on aggregate economic outcomes
(e.g., profits or production).

2.4 Extensions: Welfare and Endogenous Focus

The model has simple normative properties driven by a single market failure, the innovator’s
monopoly power. In Appendix C.1, we show how monopoly power leads to under-provision of
technology and insufficient research in equilibrium. But the direction of technological change is
always optimal in equilibrium, in the sense that the planner’s solution has the same directional com-
parative statics for 𝜃 as the competitive equilibrium. Moreover, the optimal policy to implement the
first-best is a simple subsidy for the technological good that offsets the monopoly distortion.

In the same Appendix, we explore richer normative predictions in a variant model with a dynamic
externality that stylizes the uninternalized benefits of research today on technological advancement
tomorrow. In this case the planner also internalizes the dynamic externality and incorporates this
into the optimal subsidy. In principle, equilibrium technology can redirect in the “wrong direction”
relative to the planner’s preference because of its sub-optimal inertia via the dynamic externality.

In the main analysis, we defined technological progress as either climate substituting or climate
complementing. In Appendix C.2, we study a variant of the model in which the innovator makes
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separate choices to improve climate-complementary or climate-substituting technologies. We find
that damaging climate induces innovation in the climate substituting technology and contracts in-
novation in the climate-complementing technology. These results could explain, for example, why
Midwestern US corn, which to date has been relatively unexposed to damaging heat trends, shows
evidence of increasing temperature sensitivity over time (Lobell et al., 2014). In Section 4.3.4, we will
present empirical evidence on the redirection of technology toward a priori more climate-substitutable
technology classes.

2.5 Mapping to Estimation

The previous results show that both the direction and downstream impact of endogenous innovation
in response to climate change is an empirical question, since a number of different scenarios are
possible in the theory. We now describe a specialization of the model that maps directly to our
subsequent empirical analysis.

We allow for multiple crops, indexed by 𝑘 ∈ {1, . . . , 𝐾}, and assume that a unit measure of farmers
grow each crop 𝑘. Production has the same form indicated in Equation 2.1. The climate realizations
𝐴𝑖 have cross-sectional distribution 𝐹𝑘(·) among farms growing crop 𝑘. Technology, characterized by
price and quantity (𝜃𝑘 , 𝑞𝑘), is produced by a crop-specific innovator with the production technology as
described above. And prices lie on crop-specific inverse demand curves 𝑃𝑘(𝑌𝑘) where𝑌𝑘 is production
of that crop. Propositions 1 and 2 and Corollary 1 hold in the multi-crop economy due to the
separability of production, demand, and technology development decisions across crops.9

We next assume that, for each farm 𝑖, the productivity function 𝐺(·) has the form

log𝐺(𝐴, 𝜃) = 𝑔0 + 𝑔1(𝐴 − 𝐴) + (𝑔20 + 𝑔21(𝐴 − 𝐴)) log𝜃 (2.5)

This captures a form of climate substitutability and complementarity depending on the sign of 𝑔21.10
We assume that the innovator’s cost is 𝐶(𝑥) = 𝑥1+𝜂

1+𝜂 for some 𝜂 ≥ 0. And we assume that the inverse
demand curve is 𝑃𝑘(𝑥) ≡ 𝑝0𝑥

−𝜀 for some 𝜀 ≥ 0 and for each crop 𝑘.
We solve the model up to approximation around a long-run average climate. Details are provided

in Appendix B.5. We show that aggregate innovation and local agricultural profits satisfy two
estimable regression equations and write their coefficients in terms of model primitives.

Proposition 3 (Regression Equations). Technological quality for each crop 𝑘 is given by

log𝜃𝑘 = log𝜃0 + 𝛿 · (𝐴 − 𝐴𝑘) (2.6)

9In Section 6.2, we discuss the content of these separability assumptions in the context of our quantitative counterfactuals
and what happens when they are relaxed.

10Technically, the form of substitutability captured here is in log and not level terms. Our derivation in Appendix B.5
demonstrates how the notions are interchangeable up to suitable approximation.
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where 𝐴𝑘 =
∫
𝐴d𝐹𝑘(𝐴), 𝛿 =

𝑔21−𝜏𝑔1
1+𝜂+𝜏 , and 𝜏 = 𝜀

𝛼+𝜀(1−𝛼) . Local rents are given by

logΠ𝑖 = logΠ0 + 𝛽 · (𝐴 − 𝐴𝑖) + 𝛾 · (𝐴 − 𝐴𝑘) + 𝜙(𝐴 − 𝐴𝑖)(𝐴 − 𝐴𝑘) (2.7)

where 𝑘 is the locally grown crop, 𝛽 = 𝑔1, 𝛾 = −𝜏(𝑔1 + 𝛿), and 𝜙 = 𝑔21𝛿.

Our theoretical results about whether innovation increases or decreases in response to the produc-
tivity shock translate in Equation 2.6 to the cases 𝛿 > 0 and 𝛿 < 0, respectively. Our main empirical
specification will measure crop-specific technology by the count of crop-specific plant varieties. In this
interpretation, the climate-substitutability 𝑔21 and inverse elasticity of supply 𝜂 should be interpreted
as features of this technology class. A prediction is that less climate-substitutable technology classes,
or those with lower 𝑔21, should have a smaller 𝛿. We will explore this prediction by conducting our
main analysis for multiple types of technology.

Our theoretical results about whether innovation increases or decreases resilience translate in
Equation 2.7 to the cases 𝜙 > 0 and 𝜙 < 0, respectively. If 𝛿 > 0, which will prove to be the empirically
relevant case for crop varieties, then this prediction is equivalent to testing 𝑔21 > 0 versus 𝑔21 < 0
(climate substitutes versus climate complements) or differentiating cases (a) and (c) of Figure 1.

Our counterfactual analysis in Section 6 will be based on mapping our estimates back to this
specialization of the model. In that section, we will discuss the parameter-stability assumptions that
underlie our extrapolation of in-sample findings to out-of-sample counterfactuals via the model.

3 Data and Measurement

To study our questions of interest empirically, we require measurements of exposure to damaging
climate change (both location-specific and aggregate), crop-specific biotechnological innovation, and
local economic outcomes. This section outlines these data in detail.

3.1 Data Sources

Temperature. We use daily, grid-cell level (2.5 mile × 2.5 mile) temperature data since 1950 from the
PRISM ("Parameter-elevation Regressions on Independent Slopes Model") Climate Group.11 We use
temperature data during an April to October growing season. Daily data will be important in light
of evidence that crop productivity depends on realizations of extreme weather (e.g., Hodges, 1990;
Grierson, 2001; Schlenker and Roberts, 2009), discussed in greater detail below.

Crop-specific Temperature Sensitivity. We compile estimates of crop-specific temperature tolerance
from the EcoCrop Database, published by the United Nations Food and Agriculture Organization
(FAO). The EcoCrop Database provides information about crop-specific growing conditions, including

11In particular, we use the format of these data that is available on Wolfram Schlenker’s website: http://www.columbia.
edu/~ws2162/links.html, accessed on March 14, 2020.
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numerical tolerance ranges for temperature, rainfall, and pH, for over 2,500 plants. The data were
compiled from expert surveys and textbook references during the early 1990s. As an example, the
EcoCrop data sheet for soybeans (Glycine max) cites 21 references including numerous textbooks (e.g.,
the Handbook of Legumes of World Economic Importance by Duke (1981) and Tropical Pasture and Fodder
Plants (Grasses and Legumes) by Bogdan (1977)) and one communication with an agricultural scientist.
The list of crops included in the analysis, alongside their species names, is reported in Table A1.

The piece of information we use in our main analysis is EcoCrop’s reported upper temperature
threshold for optimal growing. EcoCrop’s data on temperature tolerance is frequently used in agro-
nomics and climate science to estimate crop-specific tolerance to climate change (e.g. Hĳmans et al.,
2001; Ramirez-Villegas et al., 2013; Kim et al., 2018; Hummel et al., 2018). In our context, crop-specific
temperature tolerances will allow us to incorporate the fact that crops are differentially affected by
heat exposure into our main measure of climate-induced productivity shocks. Concretely, we will be
able to measure how the same temperature change in a fixed location induces different productivity
shocks for different crops.

In principle, a given plant’s reported temperature threshold could combine innate, physiological
differences across plant species, as well as advancements in agricultural technology. Importantly,
therefore, the EcoCrop database is designed to capture the persistent and large differences in temper-
ature sensitivity that exist across crop species. The upper threshold temperatures among our studied
crops vary widely, ranging from 17◦C to 36◦C with a standard deviation of 5.0, representing far
greater differences in heat tolerance than could be affected by technology developed in recent decades
(and far greater temperature differences than those caused by climate change). Moreover, as the
aforementioned example references suggested, EcoCrop is based on survey references with a global
and broad temporal scope, rather than field trials of new, advanced varieties. Nevertheless, when we
turn to our main empirical analysis we replicate our findings controlling directly for the crop-specific
temperature threshold, as well as using a version of crop-level temperature change exposure with a
uniform temperature threshold across crops.

Innovation. We use several complementary measures of crop-specific innovation. Our main mea-
sure of biotechnology development is from the United States Department of Agriculture (USDA)
Variety Name List. The Variety Name List, obtained through a Freedom of Information Act (FOIA)
request by Moscona (2021), is a list of all released crop varieties known to the USDA since the start
of our sample period. According to the USDA, it is compiled "from sources such as variety release
notices, official journals, seed catalogs, and seed trade publications, as well as names cleared for
use by seed companies”; the goal is to be as comprehensive as possible.12 This data set has several
key features. First, it tracks new seeds and plant varieties overtime which, both anecdotally and for
agronomic reasons, were and remain the primary technology used to adapt agricultural production

12Moreover, breeders have an incentive to report new biotechnology to the USDA for inclusion in the list because farmers
check the List to make sure that varieties they purchase were cleared.
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to extreme temperatures. Second, the data set is structured by crop and it is straightforward to link
individual technologies to crops, the units of observation in our empirical analysis (e.g., a corn seed
is a corn innovation). Our main analysis using the List consists of 69 crops, covering all the main
grains, oilseeds, and feed crops as well as a large portion of vegetables grown in the US. Missing
are a number of fruits and tubers, which are not covered. Finally, this data set makes it possible to
track biotechnology innovation during a period of inconsistent and changing intellectual property law
governing seeds and plant varieties, which makes direct measurement from patent data impossible.13

We complement this main data set with data on all Plant Variety Protection (PVP) certificates. Plant
variety protection is a form of intellectual property protection for seeds that is weaker than utility
patent protection and introduced in the middle of our sample period by the United States Government,
with the Plant Variety Protection Act (PVPA) of 1970.14 The key shortcomings of this measure are
that PVP certificates exist for only a part of our sample period, and the set of certificates is likely a
selected sample due to subsequent changes in patent law. However, the PVP certificates, unlike the
List, contain systematic information on the identity of the applicant, allowing us to investigate which
types of inventors drive the main estimates. We compiled all certificates from the USDA Agricultural
Marketing Service (AMS) and use the number of certificates issued by crop as a complementary and
independently generated measure of crop-level biotechnology development.

Finally, to measure crop-specific innovation across all technology classes, we use US patent data.
Using the patent database PatSnap, we computed the number of patents in Cooperative Patent Classi-
fication (CPC) classes A01B, A01C, A01D, A01F, A01G, A01H, and A01N (i.e., CPC classes that relate
to non-livestock agriculture) that were associated with each crop. To match patents to crops, we
searched for the name of each crop in the Variety Name List in all patent titles, abstracts, and descrip-
tions. Thus, unlike the Variety Name List, a downside to the patent data is that it is less straightforward
to link individual technologies to crops and this linking progress is undoubtedly noisier. We also,
within these patent classes, collect data on patents that mention keywords related to climate change,
heat tolerance, and drought tolerance.15 This allows us to separately measure, within each crop,
patented technologies that are and are not related to climate change.

Geography of Production. We use the 1959 round of the US Census of Agriculture to measure
planted area for all of our studied crops in each US county.16 These data are pre-determined relative
to the innovative outcomes we study. We repeat the same data construction process using the 2012

13Patent protection for seeds was not introduced until 1985 following the Ex Parte Hibberd ruling; even after 1985,
identifying seed patents from patent classification metrics is very challenging (see, e.g., Graff et al., 2003).

14In order to be granted a certificate, a variety must be new, distinct, uniform and stable; thus, as with patent protection,
there is a minimum quality threshold that all certified varieties must meet. A plant variety protection certificate does not
prevent farmers from saving protected seeds of prevent protected seeds from being used in breeding.

15Our keyword search is to require at least one of the following terms, where the asterisk indicates a wildcard, in the title,
abstract, or description: climate change, global warming, drought, heat resist*, heat toler*, extreme temperature, extreme
heat, extreme weather.

16Where possible, we use reported “planted area” in the Census of Agriculture. When these data are not available, we
use “harvested area.” Discrepancies between the two, when they are both reported, are generally small.
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round of the Census of Agriculture, for robustness checks and our analysis of production reallocation.

Agricultural Outcomes. Finally, we combine and harmonize all rounds of the US Census of Agri-
culture from 1959-2017 to measure local agricultural outcomes. The key outcome of interest is the
value of agricultural land per acre, which summarizes the local returns to holders of the fixed factor
in our model, net of costs. Using these data, we construct a decadal panel linking data from the
agricultural census to features of the climate averaged over the entire decade. When there are two
Censuses from within the same decade, we use the later observation (e.g., for the 2010s decade we
use data from the 2017 Census of Agriculture rather than 2012). We also collect data on crop revenue,
non-crop revenue, and profits to use as outcomes in robustness checks.

3.2 Measuring Extreme-Heat Exposure

Our main task to estimate an empirical analogue of “climate distress for crop 𝑘 in location 𝑖 at time
𝑡.” Our starting point is the finding in the agronomic literature that exposure to extreme heat is
the quantitatively largest effect of temperature, and modern warming trends, on output (Schlenker
and Roberts, 2009). It is also understood that the relevant “cut-off” temperature beyond which crop
productivity declines can be vastly different across crops (Ritchie and Nesmith, 1991). Empirical
estimates of these temperature cut-offs and the non-linear response of productivity only exist for a
small set of staple crops—for instance, Schlenker and Roberts (2009) study only corn, soybeans, and
cotton. To extrapolate this extreme-heat-exposure approach to our larger panel of crops, we leverage
both our fine-grained temperature data and our measurement of crop-specific “maximum optimal
temperatures” from expert assessments collected in EcoCrop.

The first step is to measure county-specific heat exposure. In the main analysis, we measure heat
exposure in the agronomically standard unit of degree days, or the integral of temperature in excess of
a specified threshold 𝑇 over time.17 We focus on a summer growing season from April to October,
which is the period in which the overwhelming majority of extreme-heat exposure occurs.18 For
each US county 𝑖, time period (e.g., decade) 𝑡, and temperature threshold 𝑇, we define the number
of realized, growing-season degree days above the threshold as DegreeDays𝑖 ,𝑡(𝑇). Appendix D.1
describes in more detail the mechanics of this calculation from the PRISM data.

We next incorporate the crop-specific information via EcoCrop’s reported “maximum optimal
temperature,” which we denote by 𝑇Max

𝑘
for each crop 𝑘. Specifically, we define extreme-temperature

exposure for county 𝑖, time-period 𝑡, and crop 𝑘 as degree-days above this cutoff:

ExtremeExposure𝑖 ,𝑘,𝑡 := DegreeDays𝑖 ,𝑡(𝑇Max
𝑘

) (3.1)

17For instance, relative to the threshold 30◦ C, a single day at a constant temperature 35◦ C contributes 5 degree days.
Five days at the temperature 31◦ C also contribute, in total, 5 degree days. Any number of days at temperature 29◦ C
contributes zero degree days.

18Averaging over all counties and summing over entire 1950-2019 sample, 99.88% of all degree-days over 30◦ occur
from April to October. That number is 98.23% for degree-days over 23◦, the high temperature for wheat, and 99.99% for
degree-days over 36◦, the high temperature for cotton.
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Our main measurements of crop- and location-level Extreme Exposure, introduced respectively in
Sections 4.1 and 5.1, are area-weighted averages of the above.

The underlying variation in this measure comes from two sources. The first is the spatial pattern
of temperatures across the United States. The second is the variation in crop physiology and how
different plants respond to this extreme heat to our best agronomic knowledge. For instance, in a
fixed period, Dunklin County, Missouri, and Stutsman County, North Dakota, will have different
extreme-heat exposures for soybeans (𝑇Max

𝑘
= 33) because they experience different weather. But even

within Dunklin County, the same weather patterns induce different extreme exposure for soybeans
and cotton (𝑇Max

𝑘
= 36), since the latter is biologically more heat tolerant.

Validation. In order to show directly that this measure of exposure to damaging heat affects crop
productivity, we estimate the relationship between extreme-heat exposure during the 1950s decade
and crop yields at the crop-by-county level using the 1959 Census of Agriculture, which we treat as
our pre-analysis period throughout the analysis. In particular, we estimate:

log yield𝑖 ,𝑘,1959 = 𝜉 · ExtremeExposure𝑖 ,𝑘,1950 + 𝛼𝑖 + 𝛼𝑘 + 𝜀𝑖𝑘 (3.2)

where 𝑖 indexes counties and 𝑘 indexes crops. Our findings are reported in Table A2 and convey that
extreme-heat exposure, by our measure, substantially reduces crop yields. The results are similar
both using the full sample of crops recorded in the Census (columns 1-3) and restricting attention to
the staple crops corn, wheat, and soybeans, which have been the focus of prior work (column 4). In
column 4, the within-𝑅2 of our measure (i.e., the 𝑅2 after excluding the effect of crop and county fixed
effects) is 0.083, indicating that our measure generates substantial variation in yields. We also show in
Section D.2 that this one-dimensional measure of heat exposure explains a large share of the overall
effect of temperature on staple crop yields by comparing it to a more flexible estimation approach.

We next show that our measure, which incorporates crop-specific cutoffs, explains a much larger
share of variation in crop yields and production than any strategy based on a uniform, crop-invariant
cut-off. In particular, we estimate versions of (3.2) without county fixed effects, and after replacing
ExtremeExposure𝑖 ,𝑘 with the exposure to degree-days greater than a single cut-off temperature, for all
temperatures between 10 and 45 degrees Celsius. The within-R-squared of the effect of our measure
on either crop yields or production is substantially larger than the within-R-squared of the effect of
exposure to degree-days above any single cut-off temperature (Figure A2). These estimates are also
described in greater detail in Appendix Section D.2.

4 Results: Climate Change and Induced Innovation

We now empirically study how exposure to damaging climate change affects innovation. We find that
increasing exposure to extreme temperatures causes biotechnology development. We then explore
in greater detail the timing of this innovative response; its heterogeneity across crops, inventors, and
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types of technology; its relationship with geographic reallocation of production; and the effects of
temperature damage in the rest of the world.

4.1 Empirical Model

We estimate an empirical model that tests, in the spirit of Propositions 1 and 2, whether new crop-level
biotechnology development responds positively or negatively to crop-level climate distress.

Crop-Level Extreme-Heat Exposure. To estimate crop-level exposure to extreme heat in the entire
US market, we sum the location-by-crop-by-time measure ExtremeExposure𝑖 ,𝑘,𝑡 over all counties,
weighting each county by its share of total planted area for that crop in the United States:

ExtremeExposure𝑘,𝑡 =
∑
𝑖

[
AreaPre

𝑖 ,𝑘∑
𝑗 AreaPre

𝑗 ,𝑘

· ExtremeExposure𝑖 ,𝑘,𝑡

]
(4.1)

where AreaPre
𝑖 ,𝑘

is the area devoted to crop 𝑘 in county 𝑖 prior to our sample period, in 1959.19 As
foreshadowed earlier, the ExtremeExposure measure varies across crops in a given decade, owing
to variation in both the distribution of temperature realizations across space and the crop-specific
temperature cutoffs. In our regression framework below, exogeneity of crop-levelΔExtremeExposure𝑘
is due to the exogeneity of change in temperature realizations across locations (Meehl et al., 2012;
Burke and Emerick, 2016).20 The changes in extreme-heat exposure for each crop in the sample
between the 1950s and 2010s and between the 1980s and 2010s are reported in Table A1; the sample
consists of all crops included in both the Census of Agriculture and the Variety Name List.

Before turning to our main empirical framework, Figure 2 displays changes across decades in both
ExtremeExposure𝑘,𝑡 and in new variety releases for a subset of crops. Changes in ExtremeExposure𝑘,𝑡
are displayed as the light blue line (left 𝑦-axis) and changes in the number of new varieties released
are displayed with the dark blue line (right 𝑦-axis). Even in the raw data crop-by-crop, changes in
variety development seem to coincide with (or slightly lag) changes in extreme-temperature exposure.
Moreover, although most crops experienced an increase in exposure to extreme heat over the full
sample period (Figure A3), the timing of this increase varies across crops. Moreover, for some
crops, exposure to extreme heat did not increase in all decades, and the magnitude of changes
in extreme heat exposure varied substantially across crops and decades. These patterns highlight

19We use land area to weight the average since it is more stable (and weather-independent) than variables like physical
production and because output data are missing in the early Census of Agriculture for a large portion of our studied crops.
For the crops for which we have both area and production, the elasticity of physical production to planted area in the
cross-section of the 1959 Census of Agriculture, for all crops for which data are available (and in a regression with crop
fixed-effects, to capture differential yields), is 1.04 with standard error .002 and within-𝑅2 of 0.94.

20Recent work has documented that variation in heat exposure across different parts of the continental US is due to natural
climate variability and, in particular, the heterogeneous consequences of rising temperatures over the Pacific Ocean (Meehl
et al., 2012). Related prior work has also assumed the exogeneity of changes in extreme-heat exposure across locations in
the US (e.g., Burke and Emerick, 2016). While exogeneity of temperature realizations is sufficient for identification, we also
show that all of our main results are very similar after controlling directly for the other component of ΔExtremeExposure𝑘 ,
crop-level variation in the maximum cut-off temperature.
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Figure 2: Changes in Extreme Exposure and Variety Releases Across Decades: Examples
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(b) Cotton
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(c) Rice
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(d) Lettuce
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(e) Carrots
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(f) Lima Beans
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Notes: Each graph reports the change in ExtremeExposure𝑘,𝑡 (light line, left 𝑦-axis) and the change in
the (log of the number of) new varieties released (dark line, right 𝑦-axis) across decades.

the variation underpinning our analysis and convey the complementarity between our main long-
difference empirical approach, described in the next section, and a panel approach, which we turn to
in Section 4.3.1.

Estimation Framework. Our baseline regression equation is the following:

𝑦𝑘 = exp{𝛿 · ΔExtremeExposure𝑘 + Γ𝑋′
𝑘 + 𝜀𝑘} (4.2)

and is the empirical analogue to Equation 2.6, in differences.21 𝑦𝑘 is the number of novel seed varieties
developed for crop 𝑘 during the period 1960-2016 and ΔExtremeExposure𝑘 is the change in crop-level
extreme heat exposure between our starting and ending decades. 𝑋′

𝑘
is a series of crop-level controls,

which we vary across specifications to probe the sensitivity of our estimates, and includes total land
under cultivation, trends in pre-period innovation, and pre-period climate measures. The former two
controls are natural to hold fixed initial market size. The last ameliorates concerns that our estimates
capture pre-existing trends in innovation or the climate. Since Equation 4.2 is a long-difference
regression, each control captures trends in the impact of that control, since all level differences across

21For consistency with the literature in innovation economics (which follows Hausman et al., 1984), we use a Poisson
pseudo maximum likelihood estimator. Whenever results from a Poisson model are reported, we use pseudo-maximum
likelihood estimators in order to ensure appropriate standard error coverage; see Wooldridge (1999).
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Table 1: Temperature Distress Induces Crop Variety Development
(1) (2) (3) (4) (5) (6)

Sample	Period 1980-2016

Δ	ExtremeExposure 0.0167*** 0.0171*** 0.0136*** 0.0184*** 0.0226*** 0.0338***
(0.00424) (0.00436) (0.00372) (0.00541) (0.00668) (0.00745)

Log	area	harvested Yes Yes Yes Yes Yes Yes
Pre-period	climate	controls No Yes Yes Yes Yes Yes
Pre-period	varieties No No Yes Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. No No No Yes Yes Yes
Average	Temperature	Change No No No No Yes No
Observations 69 69 69 69 69 69

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	released	and	the	
sample	period	for	each	specification	is	listed	at	the	top	of	each	column.	The	controls	included	in	each	specification	are	
noted	at	the	bottom	of	each	column.	Robust	standard	errors	are	reported	in	parentheses	and	*,	**,	and	***	indicate	
significance	at	the	10%,	5%,	and	1%	levels.	

1950-2016

crops are differenced out.
An estimate of 𝛿 > 0 implies that biotechnology development has been directed toward crops that

have been more exposed to extreme temperature; 𝛿 < 0 implies that biotechnology development has
been directed away from crops that have been more exposed to extreme temperature.

4.2 Results: Temperature Distress and Variety Development

Table 1 presents our baseline estimates of Equation 4.2. In the first column, only ExtremeExposure𝑘
and the log of total area harvested, our proxy for crop-level market size, are included as predictors.
We find that 𝛿 > 0; innovation in variety development was directed toward crops that were more
damaged by temperature change. The point estimate implies that a one standard deviation increase in
climate distress led to an about 0.2 standard deviation increase in new varieties. Moreover, the mean
change in extreme exposure across crops corresponds to a 20% increase in new variety development.

The remaining columns explore the sensitivity of the estimates. In column 2, we control for the
average temperature and average precipitation on land devoted to each crop during the pre-period
and in column 3, we add the number of varieties released for each crop from 1900-1960, equivalent
to the pre-trend in variety development for the long difference specification; the coefficient of interest
remains very similar. In column 4 we control directly for each crop’s cut-off temperature, 𝑇Max

𝑘
,

and cut-off temperature squared—again, the coefficient of interest is similar, suggesting that the
estimates are not driven by fixed differences in crop-level sensitivity, which could affect trends in
technology development or the extent to which crop production can shift across seasons. The similar
estimates also indicate that the findings are not driven by differences across crops in ideal planting
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and harvesting dates, which could vary depending on heat sensitivity. In column 5, we control
for the change in the average temperature for each crop over the sample period—this is constructed
analogously to (4.1), except rather than weight crop allocations by extreme-heat exposure we weight by
county-level average temperature (◦C). The inclusion of this control has little impact on our coefficient
of interest, validating our extreme exposure measure as a strong crop productivity shock operating
independently from changes in mean temperature. Last, column 6 documents that the result is very
similar if we restrict our analysis to decades since 1980.

We visualize the relationship between extreme exposure and innovation in Figure 3a, the (or-
dinary least squares) partial correlation plot of Δasinh(Varieties)𝑘 against ΔExtremeExposure𝑘 after
partialling out all control variables. The relationship is positive, strongly statistically significant
(𝑡 = 3.25), and does not appear to be driven by outlier observations. In Figure 3b, we plot the
relationship between extreme-temperature exposure from 1980-present and Δasinh(Varieties)𝑘 from
1950-1980. If this relationship were positive, it could indicate that our main results are driven by pre-
existing trends in temperature change and innovation. However, the relationship is almost exactly
zero and statistically insignificant (𝑡 = 0.01). The null result in this falsification exercise is consistent
with a causal interpretation of our findings and with no anticipation effects in the long run.

Sensitivity Analysis: Measurement. Table A3 replicates our baseline results using an alternative
and independently constructed measure of new plant varieties measured from the Plant Variety
Protection certificates. The specifications are identical to columns 1-5 of Table 1, except the sample
period is from 1980 to the present and pre-period innovation is measured from 1970-1980, since the
PVPA authorizing the certificates was passed in 1970. The sample size is also slightly smaller since
asexually propagating crops were excluded from the PVPA. We find that the impact of extreme-
temperature exposure on biotechnology development is positive and significant using this alternative
strategy to measure the dependent variable.

We next show in Table A4 that the results are qualitatively similar using GDDs in excess of 30◦C for
all crops as the key independent variable (Panel A), a strategy which does not rely on the crop-specific
temperature tolerances from EcoCrop. Our baseline measure of ΔExtremeExposure that incorporates
crop-specific temperature tolerances is, however, a stronger predictor of technology development
when the two are included in the same regression (Panel B). This finding, consistent with our earlier
finding for disaggregated production and yield data (Section 3.2), suggests that our new strategy for
incorporating crop-level differences in temperature sensitivity is important for precisely measuring
the crop-level productivity shock. Finally, we show in Table A5 that the results are very similar if we
construct the main independent variable using crop-by-county areas from the 1955, instead of 1959,
Census of Agriculture, or the average of the two.

Sensitivity Analysis: Potential Confounding Forces. The temperature trends we measure are
unavoidably correlated with geography. Hence, one possible source for spurious correlation are
geographic trends in agricultural conditions and/or innovation. We first show that our baseline
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Figure 3: Extreme Exposure and Variety Development: Partial Correlation Plot (OLS)

(a) Partial Correlation Plot (𝑡 = 3.25)
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(b) Placebo Partial Correlation Plot (𝑡 = 0.01)
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𝑡-statistic are reported at the bottom of each graph.

results are stable when controlling for polynomials in crop-level area-weighted latitude and longitude,
the share of cropland in each of the ten largest agricultural states, and the share of cropland under
irrigation (Table A6). Schlenker et al. (2006) and Schlenker and Roberts (2009) emphasize that the
predominance of irrigation in Western states necessitates different agronomic modeling of outcomes
in the East and West US. When we follow these authors’ suggestions of measuring climate damage
only east of the 100th meridian, we find similar effects of damage on total US innovation (Table
A7). These findings underscore that our results are not driven differences in geography or, more
specifically, by differences in temperature change and agricultural production between the Eastern
and Western parts of the US.

In addition to differences in geographic characteristics, crops also differ along a range of economic
dimensions that have a major impact on agricultural production, including trade and agricultural
policy. To study whether our findings are influenced by broader aspects of the agricultural economy,
we measure crop-specific exposure to five potentially relevant variables: proximity to US experiment
stations (Kantor and Whalley, 2019), insurance coverage, subsidy payments, trade exposure, and the
wealth of producers. We re-produce our main estimates controlling for each of these variables in
Table A8, and our main coefficient of interest is stable across specifications.22

Sensitivity Analysis: Inference. We finally report results that use statistical inference techniques
that are more robust to other, unmeasured and unmodeled confounders. First, we calculate the

22We also find no evidence that changes in crop-level subsidies or insured acres are correlated with changes in crop-level
exposure to extreme heat (not reported), further indicating that the findings are not confounded by policy changes.
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standard errors of Adao et al. (2019), clustered by state, for our main OLS regression model underlying
Figure 3a. The Adao et al. (2019) method provides more correct inference when there are unmodeled
shocks at the level of our “share” variable, the crop area weights. In particular, they allow for county-
level confounding shocks, arbitrarily correlated among themselves at the state level, which cause
potential outcomes for crops grown in common locations to be correlated. We obtain reassuringly
similar precision to the baseline estimates (SE: 0.0058). We also use randomization inference as an
alternative strategy to investigate statistical significance. In the specification with all baseline controls,
randomization inference implies that 𝑝 = 0.007 in the case of the Poisson estimate and 𝑝 = 0.003 in
the case of the OLS estimate.

Narrative Evidence. In Online Appendix E, we provide narrative evidence that corroborates and
contextualizes our result the biotechnology development responds to modern climate change. As
concrete examples, we describe in detail the scientific underpinning and development history of two
lines of heat-resistant corn, Pioneer’s Optimum AQUAmax and Monsanto’s DroughtGard. In each
case, the plant breeders themselves emphasize how hot and dry conditions in corn-growing areas
motivated product development. This analysis foreshadows our subsequent analysis showing that
agricultural patents corresponding to more heat-exposed crops are also become more likely, over
time, to mention key words related to climate change, heat, and drought (Section 4.3.4).

4.3 Additional Results and Mechanisms

4.3.1 Timing of Technological Response

We have focused on long-difference specifications because both temperature change and innovation
are long-run processes. However, it is important also to know how quickly innovation responds to
temperature change and whether innovative activity has anticipated future changes or lagged past
ones. Figure 2 displayed the substantial variation in extreme-heat exposure and innovation across
decades during our sample period and was a preliminary indication that technology development
has reacted in the same decade as the change in temperature, or in some cases with a lag.

To investigate these questions systematically, we estimate the following panel-data model:

𝑦𝑘𝑡 = exp

{∑
𝜏∈T

𝛿𝑡+𝜏 · ExtremeExposure𝑘,𝑡+𝜏 + Γ𝑋′
𝑘𝑡 + 𝛼𝑘 + 𝜔𝑡 + 𝜀𝑘𝑡

}
(4.3)

where the outcome variable now is new varieties released for crop 𝑘 in decade 𝑡, and both crop and
decade fixed effects are included. The set of leading or lagged values of extreme-temperature exposure
is denoted by T. Figure 4 shows our dynamic estimates graphically. Each point is the coefficient from a
separate regression estimate of Equation 4.3, in which T includes both the relevant lead or lagged value
and the contemporaneous value of the temperature shock. We find no evidence of an anticipation
effect, consistent also with our null result in Figure 3b. Variety development increases markedly
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Figure 4: Extreme Exposure and Variety Development: Panel Estimates
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Notes: Each point reports a coefficient estimate from separate estimations of (4.3). The solid and
dashed lines are 90% and 95% confidence intervals. Standard errors are clustered by crop.

during the decade of the temperature shock and persists during the decade that follows. Table A9
reports additional estimates of Equation 4.3. Across specifications, which include varying numbers
of leads and lags, leading values are small in magnitude and statistically insignificant, while the
contemporaneous and lagged temperature shocks have a positive effect on technology development.

4.3.2 Heterogeneous Effects Across Crops

Our baseline estimates treated all crops as symmetric. In practice crops vastly differ in market size
and production technology, and our model described how these differences can affect the relationship
between climate damage and innovation (see Proposition 3). Here, we study heterogeneity in the
relationship between extreme-heat exposure and innovation. Our findings are reported in Table A10.

We first study whether our baseline effects are heterogeneous based on baseline market size, as
proxied by planted area. We find strong evidence that larger-market crops see a more pronounced
response to climate distress (column 1). However, we do not find evidence of larger effects on crops for
which, using international production and trade data, the United States is a relatively large producer
(column 2) or a relatively large net exporter (column 3). These estimates foreshadow our findings
reported below in Section 4.3.7 that US innovation reacts predominately to crop-level temperature
damage in the US and not the rest of the world. Thus, large markets in the US have the largest pull
on innovation, even if they are not large as a share of global production.

We next study whether the response of innovation depends on the relative impracticality of crop
switching. In our model, a more easily “switchable” crop could have a higher or lower elasticity of
technology development to climate distress, depending on whether it has a higher or lower climate
substitutability of technology. We formalize this link, and the ambiguity of the sign prediction, in
Online Appendix C.3. As a first proxy for “switchability,” we compute the average share of county
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cropland devoted to each crop among counties where it is cultivated. Higher values of this measure
imply that the crop is more constrained in terms of where it can be planted. We find no evidence of
heterogeneous effects along this margin (column 4). We also find very little heterogeneity based on
whether a crop is annual or perennial (column 5). Annual crops are re-planted every year, and as a
result are easier to shift across locations. Together, these results suggest that ease of crop switching,
and its net effect on climate substitutability, is not an important mediating factor in our analysis.

In response to extreme heat, crop production may shift not only across locations but also across
seasons. To investigate whether the response of innovation depends on the possibility of shifting
production toward colder months, we construct an indicator that equals one if a crop has a below-
median value for its lower-bound temperature according to EcoCrop. Consistent with this hypothesis,
we find some evidence that crops that can withstand lower temperatures see a less pronounced
response to climate distress (column 6). We also investigate the potential role of differences in price
responsiveness (𝜀) across crops. We use whether or not a crop is perishable as a proxy for the strength
of the price response. However, we do not detect heterogeneous effects along this margin (column 7).

We finally investigate whether proximity to US experiment stations, which could plausibly in-
crease the elasticity of research supply 𝜂−1, leads to a greater response of technology to extreme-heat
exposure. In particular, we study whether the results are heterogeneous based on the share of land
area in the same county as an experiment station (column 8). We do find a larger effect for crops that
are grown, on average, closer to US experiment stations; however, the estimate is imprecise and we
therefore interpret it with caution.

4.3.3 Heterogeneous Effects Across Inventors

Our baseline estimates pool technology development across all inventors. However, different parts
of the innovation ecosystem could react differently to new technology demand that results from
temperature change. While the Variety Name List does not collect systematic data on inventor identify
throughout the sample period, the PVP data do. Using the applicant name associated with each PVP
certificate, we classify each applicant as either a private sector firm, a public sector entity, a university,
or none of the above.23 In Table A11 we re-produce our baseline estimates separately for PVPs from
each applicant category. We find large, positive effects for private sector applicants (column 1). While
the effect is also positive for public sector and university applicants, the effect sizes are smaller and
statistically indistinguishable from zero (columns 2-3). These findings indicate that the re-direction
of technology underlying our main results is driven by the private sector, consistent with our model

23We make this classification using keyword searches of applicant names. We identify private sector applicants as those
with word fragments INC, LLC, LC, CO, CORP, BV, COMPANY, LP, or LTD in the applicant name. We identify public sector
applicants as those with word fragments USDA, US GOVERNMENT, RESEARCH SERVICE, or EXPERIMENT STATION
in the applicant name. We identify colleges and universities as those with UNIVERSITY, COLLEGE, or INSTITUTE in
the applicant name. By our measure, the average crop in the sample has received since 1980 144.2 total PVP certificates,
116.5 private sector PVP certificates, 9.6 public sector PVP certificates, 11.2 college or university PVP certificates, and 11.2
unclassified PVP certificates. Unclassified certificates could be capturing individual inventors in any sector, or small firms.
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Table 2: Temperature Distress and Climate-Related Patenting

(1) (2)

Dependent	Variable:
Patents	not		
related	to	
the	climate

Patents	
related	to	
the	climate

Δ	ExtremeExposure 0.00335 0.0118**
(0.00458) (0.00552)

All	Baseline	Controls Yes Yes
Observations 69 69

(1) (2)

Dependent	Variable:
Patents	not		
related	to	
the	climate

Patents	
related	to	
the	climate

Δ	ExtremeExposure 0.00335 0.0118**
(0.00458) (0.00552)

All	Baseline	Controls Yes Yes
Observations 69 69

Notes:	The	unit	of	observation	is	a	crop	and	both	columns	report	Poisson	pseudo-
maximum	likelihood	estimates.	The	outcome	variables	are	the	number	of	crop-specific	
agricultural	patents	that	are	not	related	to	the	climate	(column	1)	and	the	number	of	
crop-specific	agricultural	patents	related	to	the	climate	(column	2).	A	patent	is	
classified	as	related	to	the	climate	if	its	title	or	absract	contains	any	of	the	following	
words	or	bigrams:	climate	change,	global	warming,	drought,	heat	resist*,	heat	toler*,	
extreme	temperature,	extreme	heat,	and	extreme	weather.		All	baseline	controls	are	
included	in	both	specifications.	Robust	standard	errors	are	reported	in	parentheses	
and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Notes:	The	unit	of	observation	is	a	crop	and	both	columns	report	Poisson	pseudo-
maximum	likelihood	estimates.	The	outcome	variables	are	the	number	of	crop-specific	
agricultural	patents	that	are	not	related	to	the	climate	(column	1)	and	the	number	of	
crop-specific	agricultural	patents	related	to	the	climate	(column	2).	All	baseline	
controls	are	included	in	both	specifications.	Robust	standard	errors	are	reported	in	
parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

of innovation in response to profit incentives and changing farmer demand (Section 2.1).
A related question is whether temperature distress shifts patterns of innovation across crops

within inventor or whether it leads to the entry of new inventors to meet the demand for new climate-
resistant technology. To investigate this question, we estimate a crop-by-applicant regression that
includes applicant fixed effects:

𝑦𝑘𝑎 = exp{𝛿𝑤 · ΔExtremeExposure𝑘 + Γ𝑋′
𝑘 + 𝛼𝑎 + 𝜀𝑘𝑎} (4.4)

where 𝑎 indexes PVP applicants, 𝑦𝑘𝑎 is the number of PVP certificates awarded to applicant 𝑎 for
crop 𝑘 since 1980, and 𝛼𝑎 are applicant fixed effects. The coefficient 𝛿𝑤 captures the within-applicant
redirection of technology. Estimates of (4.4) are reported in Table A12 and we find that 𝛿𝑤 is positive,
statistically significant, and statistically indistinguishable in magnitude from our baseline estimates.
These findings indicate that the results are driven by individual firms and organizations re-directing
technology development toward more distressed crops. They are also consistent with our narrative
evidence about the refocusing of crop breeding within large biotechnology firms on heat- and drought-
resistance (Online Appendix E).

4.3.4 Heterogeneous Effects Across Types of Technology

Our model predicted that the reallocation of agricultural innovation toward climate-distressed crops
should be stronger for climate-substitutable technologies (i.e., those with higher 𝑔21). We test this
prediction using two schemes of technology classification in our crop-specific patent data.

Our first strategy for measuring the climatic specificity of patents is to measure whether or not each
patent mentions climate-related key words, as introduced in Section 3.1. We re-estimate our long-
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Figure 5: Temperature Distress and the Share of Climate-Related Patents
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Notes: This figure reports the partial correlation plot between ΔExtremeExposure𝑘 and the share of
crop-specific patented technologies released since 1960 that are related to the climate. The full set of
baseline controls are included, including the relevant pre-period dependent variable in this context:
the share of climate-related patented technologies developed between 1900-1960. The coefficient
estimate, standard error, and t-statistic are reported at the bottom of the figure.

difference economic model (Equation 4.2) using non-climate-identified patents and climate-identified
patents as separate outcomes in Table 2. We find a small and insignificant effect on the first, and
positive and significant effect on the second, consistent with innovation redirecting toward climate-
related technologies without crowding out other technologies. Figure 5 visualizes the positive and
significant relationship between crop-level climate distress and the share of new crop-level patented
technologies that are related to the climate. These results convey that temperature change has
directly increased the development of new technologies related to climate change, while leaving the
development of other technologies relatively unchanged. This is also consistent with qualitative
evidence on the directed search for climate-resistant traits and varieties (see Online Appendix E).
Moreover, in light of our model, the null response of non-climate patents is inconsistent with strong
price effects driving incentives for innovation. This case would create incentives for all categories of
technology, not just the more climate-adaptive categories (see Propositions 2 and 3).

As a secondary strategy, we investigate the impact of exposure to extreme temperatures on patent-
ing in each major Cooperative Patent Classification (CPC) class associated with crop agriculture.24
The results are reported in Table A13. We find positive effects on fertilizing, planting, and sowing
technologies (CPC Class A01C; column 2) and soil working technologies (A01B; column 3), which are
statistically significant for the former and for their sum (column 4). The coefficients, up to statistical

24We omit patents in A01G, which covers both agriculture and horticulture, and A01H, which did not have consistent
relevance for all plant species over our sample period due to legal changes in the patentability of plants.
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precision, have comparable magnitude to our baseline effect on crop varieties (reprinted in column
1). However, we find small and statistically insignificant effects of climate distress on innovation in
harvester and mower technologies (column 5) or post-harvest and processing technology (column 6).
These results are consistent with arguments in the economic and historical literature that fertilizer,
planting, and soil modification technology have been crucial in the face of environmental constraints
(Olmstead and Rhode, 2008; Baveye et al., 2011), while mechanical harvesting technology has not
(Hayami and Ruttan, 1971; Ruttan and Hayami, 1984). Moreover, in our own data 30% of patents
related to fertilizing, planting, and sowing mention at least one of the climate-related keywords, while
only 7% of harvest and post-harvest patents do so.

4.3.5 Effects of Other Climate Shocks

Our main analysis focuses on the impact of extreme heat, which has been documented in prior work
(Schlenker and Roberts, 2009) and our own validation analysis (Appendix D.2) to be the main channel
through which temperature affects crop production. We now investigate the relationship between
other measures of climate distress and innovation: extreme cold and drought. To measure crop-level
exposure to extreme cold, we use the lower bound temperature cut-off from the EcoCrop database to
measure, for each crop, and compute exposure to temperatures below this threshold:

Extreme Cold Exposure𝑘,𝑡 =
∑
𝑖

[
AreaPre

𝑖 ,𝑘∑
𝑗 AreaPre

𝑗 ,𝑘

· DaysBelowLowerBound𝑖 ,𝑘,𝑡

]
(4.5)

To measure crop-level exposure to drought, we measure:

Drought Exposure𝑘,𝑡 =
∑
𝑖

[
AreaPre

𝑖 ,𝑘∑
𝑗 AreaPre

𝑗 ,𝑘

· PDSI𝑖 ,𝑡

]
(4.6)

where PDSI𝑖 ,𝑡 is the Palmer Drought Severity Index (PDSI) measure in county 𝑖 and decade 𝑡. Drought
itself is often caused by evapotranspiration that results from exposure to extreme heat (Hanson, 1991;
Cheng et al., 2019). Thus, exposure to drought is unlikely to be independent from exposure to extreme
heat, and instead may capture one channel through which extreme heat affects crop production and
hence demand for new technology.

Estimates of an augmented version of Equation 4.2 that includes both extreme cold exposure and
drought exposure are reported in Table A14. We find no statistically significant evidence that exposure
to extreme cold affects innovation. We identify a positive but imprecise relationship between drought
exposure and innovation. However, across specifications, the magnitude of the effect of drought is
substantially smaller than the magnitude of the direct effect of extreme heat. In standardized units,
the effect of drought is always below one third the magnitude of the effect of extreme-heat exposure.
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4.3.6 Effects of Creating New Markets

Farmers may respond to shifting temperatures by changing the crops that they grow. Such a real-
location in planting across space may have quantitatively important effects on the response of US
agriculture to climate change and may also interact with directed innovation. In Online Appendix F,
we investigate the extent to which temperature change has induced crop switching and, as a result,
affected innovative incentives by changing crop-level market sizes. We briefly summarize our results
here.

First, we find that farmers in a given county switch away from more extreme-heat exposed crops
and toward crops for which local conditions became more favorable. Second, conditional on crop
and county fixed effects, the magnitude of this reallocation is quantitatively small—a one-standard
deviation relative increase in crop-by-county extreme-heat exposure leads to only a 0.018 standard
deviation decline in planted area. Third, when we control directly for our estimates of temperature-
induced changes in planted area in our baseline estimating equation (4.2), the estimated relationship
between extreme-heat exposure and technology development is unchanged. Thus, endogenous
planting reallocation does not bias or mediate our baseline estimates of the relationship between tem-
perature change and technology development. Fourth, we find an independent positive correlation
between heat-induced changes in market size and biotechnology development. This demonstrates an
additional channel by which temperature change affects agricultural innovation.

4.3.7 Response to Global Damages

While our main analysis focuses on the response of US innovation to temperature distress in the US,
in Appendix G we investigate how US innovation has reacted to temperature distress in the rest of the
world. To measure the extreme-heat exposure of each crop globally, we combine the gridded, hourly
temperature dataset of Muñoz-Sabater et al. (2021), which covers the whole world from 1980 to the
present, with geo-coded crop-level planting data from Monfreda et al. (2008).25 Figure G1 reports the
relationship between crop-level extreme-heat exposure in the US and in the rest of the world, which
we find is essentially flat. This suggests that crop-specific adaptation technology developed for the US
may not be meeting the most pressing needs around the world. This also indicates that temperature
change outside the US does not bias or mediate our baseline finding.

We next directly investigate how US innovation reacts to changes in temperature distress in
the rest of the world by estimating an augmented version of Equation 4.2 that includes crop-level
extreme-heat exposure outside of the US. We find no evidence that US technology responds to
extreme-heat exposure elsewhere in the world, and document that this is not an artifact of our global
measurement strategy by replicating our baseline, within-US results using the new data. These results
are consistent with existing findings of high home bias in biotechnology innovation (Costinot et al.,

25The Monfreda et al. (2008) dataset was created by combining national, state, and county level census data with
crop-specific suitability data, to construct a 5-by-5 minute grid of the area devoted to each crop circa 2000.
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2019; Moscona and Sastry, 2022). While a full analysis of global innovation is beyond the scope of
this paper, understanding which markets do and do not shift incentives to develop climate adaptation
technology, and which parts of the world are more or less able to benefit from technological spillovers
from research-intensive markets like the US, seems like an important area for future research.

5 Results: Induced Innovation and Damage Mitigation

The previous section’s results demonstrated that technology development has re-directed toward
crops more exposed to extreme heat in recent history. In this section, we investigate the extent to
which induced innovation has mitigated economic damage from temperature change. Our empirical
strategy, suggested by the model, is to estimate the marginal impact of county-level extreme-heat
exposure as a function of predicted innovation exposure. We find significant evidence that innovation
exposure has mitigated the economic impacts of temperature distress.

5.1 Empirical Model

Extreme-Heat Exposure for Counties. To measure extreme-heat exposure for each county 𝑖, we esti-
mate the average crop-specific extreme-heat exposure across all crops grown in the county, weighting
by crop-specific planted areas in the pre-analysis period:

County-Level Extreme Exposure𝑖 ,𝑡 =
∑
𝑘

[
AreaPre

𝑖 ,𝑘∑
𝑘′ AreaPre

𝑖 ,𝑘′
· ExtremeExposure𝑖 ,𝑘,𝑡

]
(5.1)

AreaPre
𝑖 ,𝑘

is the land area devoted to crop 𝑘 in county 𝑖 in 1959 and ExtremeExposure𝑖 ,𝑘,𝑡 is measure of
extreme-heat exposure defined in Section 3.2. County-Level Extreme Exposure𝑖 ,𝑡 thus incorporates
crop-specific variation in heat sensitivity, departing from previous work on county-level climate
damages that treat all counties the same and estimate the effect of different temperature realizations
across space (e.g., Schlenker et al., 2006). In the model, the measure 𝐴 − 𝐴𝑖 sufficed to measure local
climate distress for the single grown crop (Proposition 3); since US counties grow many crops, our
empirical analogue is simply the weighted average across crops. Figure A5a displays the the change
in County-Level Extreme Exposure𝑖 ,𝑡 from the 1950s to the 2010s across US counties.

To validate this measure of county-level temperature distress, we estimate county-level relation-
ship between the change in County-Level Extreme Exposure𝑖 ,𝑡 from the 1950s to the 2010s and the
change in log of agricultural land values over the same period. This estimate is reported in column 1
of Table A15; it is negative and highly significant, consistent with County-Level Extreme Exposure𝑖 ,𝑡
capturing damage from climate change that translates into lower rents. In columns 2 and 3 we present
the relationship between the change in County-Level Extreme Exposure𝑖 ,𝑡 and the change in revenue
per acre from crop and non-crop production respectively. We find a large, negative effect on revenues
from crop production but no effect on revenues from non-crop production, suggesting our measure
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finely targeted to the productivity of crop production.

Innovation Exposure for Counties. We next calculate each county’s innovation exposure as the aver-
age across all crops’ national extreme-heat exposure—our main crop-level measure of temperature
distress—weighted by planted areas:

Innovation Exposure𝑖 ,𝑡 =
∑
𝑘


AreaPre

𝑖 ,𝑘∑
𝑘′ AreaPre

𝑖 ,𝑘′
·
∑
𝑗≠𝑖

[
AreaPre

𝑗 ,𝑘∑
𝑗≠𝑖 AreaPre

𝑗 ,𝑘

· ExtremeExposure𝑗 ,𝑘,𝑡

] (5.2)

We make only the small change of calculating this variable leaving out the county 𝑖 to avoid any
mechanical correlation. This measure will allow us to investigate the role of endogenous technological
progress because, as documented in the first part of the paper, it is a strong predictor of innovation
and hence the existence of new, climate-induced technology that can be used for production in county
𝑖. Equation 5.2 is again the empirical analogue of our model-derived expression for innovation
exposure, 𝐴 − 𝐴𝑘(𝑖), modified to incorporate multiple crops and purge the measure of national crop-
level damage driven by the county in question (see Proposition 3). Figure A5b displays the change in
InnovationExposure𝑖 ,𝑡 from the 1950s to the 2010s across US counties.

Estimation Framework. As our primary dependent variable, we use the price of agricultural land.
Let AgrLandPrice𝑖 ,𝑡 be the agricultural land price per acre of cultivated land, measured from the
Census of Agriculture in decade 𝑡 in location 𝑖.26 The agricultural land price captures the net present
value of profits from agricultural production and has the benefit of capturing both the benefits of new
technology alongside its potentially higher cost. To investigate the role of innovation in mitigating
economic damages from temperature change, we estimate versions of the following equation:

log AgrLandPrice𝑖 ,𝑡 = 𝛿𝑖 + 𝛼𝑠(𝑖),𝑡 + 𝛽 · Extreme Exposure𝑖 ,𝑡 + 𝛾 · InnovationExposure𝑖 ,𝑡

+ 𝜙 ·
(
Extreme Exposure𝑖 ,𝑡 × InnovationExposure𝑖 ,𝑡

)
+ Γ𝑋′

𝑖𝑡 + 𝜀𝑖 ,𝑡
(5.3)

where 𝛿𝑖 is a county fixed effect and 𝛼𝑠(𝑖),𝑡 is a state-by-time fixed effect. Our coefficients of interest
are 𝛽 and 𝜙, which capture the direct effect of temperature distress and the heterogeneous effect of
temperature distress depending on each county’s “innovation exposure.” This specification is the
empirical analogue of Equation 2.7, derived in Proposition 3 of the model.

We estimate Equation 5.3 with two main specifications: a two-period “long difference,” with
𝑡 ∈ {1959, 2017}, and a decadal panel. We focus on testing the hypothesis that 𝜙 > 0. Through the
lens of the simple model taxonomy in Figure 1, combined with our previous finding that climate
distress induced positive innovation, this hypothesis compares case (a) in which mitigation (driven
by the marginal product force) corresponds with increased resilience, against case (c), in which

26The price of land reported in the Census includes the price of the land itself plus buildings and improvements. We
include state-by-time fixed effects in our baseline specification, which soak up any variation in building and improvement
prices that is varies at the state level (as assumed, for instance, by Donaldson and Hornbeck, 2016).
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Table 3: Innovation and Resilience to Climate Damage
(1) (2) (3) (4) (5) (6) (7)

County-Level	Extreme	Exposure -0.851*** -1.519*** -0.825*** -0.862*** -0.786*** -0.232** -0.390***
(0.211) (0.240) (0.203) (0.238) (0.226) (0.107) (0.132)
[0.264] [0.304] [0.244] [0.305] [0.279] [0.105] [0.103]

County-Level	Extreme	Exposure	x	Innovation	Exposure 0.249*** 0.425*** 0.237*** 0.251*** 0.230*** 0.0912*** 0.128***
(0.0757) (0.0745) (0.0728) (0.0791) (0.0762) (0.0315) (0.0321)
[0.0945] [0.0921] [0.0881] [0.0995] [0.0929] [0.0253] [0.0243]

County	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
State	x	Decade	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Weighted	by	Agricultural	Land	Area No Yes No No No No Yes
Output	Prices	and	Interactions No No Yes No Yes No No
Avg.	Temp.	(°C)	and	Interactions No No No Yes Yes No No
Observations 6,000 6,000 5,990 6,000 5,990 20,931 20,931
R-squared 0.989 0.991 0.989 0.989 0.989 0.979 0.984

Dependent	Variable	is	log	Land	Value	per	Acre

Notes:	The	unit	of	observation	is	a	county-year.		Standard	errors,	double	clustered	at	the	county	and	state-by-decade	levels,	are	reported	in	
parentheses,	and	standard	errors	clustered	by	state	are	reported	in	brackets,		and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Long	Difference	Estimates	(1950s-2010s) Panel	Estimates

mitigation (driven by price effects) corresponds with decreased resilience.

5.2 Results: Local Adaptation and Resilience

Estimates of Equation 5.3 are reported in Table 3. In column 1, the baseline long-difference speci-
fication with no added controls, we find that 𝜙 > 0 and that this relationship is highly statistically
significant. The estimates are very similar when each county is weighted by its pre-period agricul-
tural land area (column 2), or when either the unweighted or weighted specification is estimated
on a decadal panel of counties (columns 6-7). Combined with our estimates of the relationship be-
tween temperature distress and innovation, this result indicates that technological progress is directed
toward damaged crops and leads to increased resilience.

To visualize the findings, Figure 6 reports the marginal impact of exposure to extreme heat (𝑦-axis)
for quantiles of the innovation exposure distribution (𝑥-axis), using the specification from column
1. On the left side of the figure is the marginal effect of extreme-heat exposure for counties that are
relatively less exposed to induced innovation and on the right side of the figure is the marginal effect
of extreme-heat exposure for counties that are relatively more exposed to induced innovation. The
difference in marginal effects between the 75th and 25th percentile is 60% of the median effect, and
the difference from the 90th and 10th percentiles is 115% of the median effect. In the counties most
exposed to induced innovation, we detect no significant impact of extreme heat on land values.

Sensitivity: Alternative Measurement Strategies. While our baseline estimates use the (log of)
agricultural land values as the main dependent variable, Table A16 documents that our findings are
very similar if we instead use in-sample agricultural revenues or profits as the dependent variable.
In columns 1-2 the dependent variable is (log of) crop revenue per acre, in columns 2-3 it is total
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Figure 6: Marginal Effect of County-Level Extreme Exposure as a Function of Innovation Exposure
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Notes: This figure reports marginal effect of extreme-temperature exposure on (log of) agricultural
land values for quantiles of the innovation exposure distribution. The solid and dashed lines are 90%
and 95% confidence intervals respectively.

agricultural profits, and in column 3 it is total agricultural profits per acre; while we are able to
measure revenue specific to crop production, spending is not broken down by crop and non-crop
production and so we are only able to measure profits from all agricultural activities, Nevertheless,
in all specifications we find that 𝛽 < 0 and that 𝜙 > 0.

Sensitivity: Potential Confounding Forces. A potential concern with our approach is that our
innovation exposure measure might be correlated with national crop prices and that prices have
non-log-linear effects on agricultural land values. In the model of Section 2.5, prices have only a log-
linear impact on land values because of the Cobb Douglas structure, and in this case the relationship
between output prices and land values do not bias our estimates of 𝜙. Nevertheless, in practice, the
relationship between prices and land values might be more complicated because input shares are not
fixed. To ameliorate these concerns, we directly measure and control for the change in output prices
of the crops produced in each county. Using data on national crop-level producer prices from the
USDA, we construct a measure of the price of each county’s output bundle in decade 𝑡 as:27

Output Price𝑖𝑡 =
∑
𝑘

AreaPre
𝑖 ,𝑘∑

𝑘′ AreaPre
𝑖 ,𝑘′

· log(Producer Price𝑘,𝑡) (5.4)

where Producer Price𝑘,𝑡 is the national producer price for crop 𝑘 in averaged over decade 𝑡 as recorded
by the USDA. Column 3 of Table 3 reports estimates of Equation 5.3 in which we control for both this

27Producer price information is not available for the full set of crops in the baseline analysis. The crops for which national
producer price data exist during the period of analysis are: wheat, rye, rice, tobacco, sorghum, soybeans, corn, alfalfa,
cotton, sugar beets, oats, cranberries, peanuts, flax, hay, beans, and hops.
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county-level output price measure, as well as its interaction with County-Level Extreme Exposure𝑖 ,𝑡 .
Estimates of our coefficient of interest are virtually unchanged.

Another potential question is whether the estimates are capturing amenity value effects of chang-
ing temperature rather than the productivity consequences of climate change (Fisher et al., 2012).
While we are less worried about this issue since our temperature distress measure captures not only
the distribution of temperature changes but also the distribution of crop production and physiology,
in column 4 of Table 3 we control directly for county-level temperature (in degrees Celsius), counties’
crop mix exposure to average temperature changes, and the interaction of the two. Our results remain
very similar. Column 5 includes both the full set of price controls and the full set of temperature
controls and the results are again very similar.

We conduct a series of additional checks that our findings are not driven by features of the baseline
specification. The results are very similar using decade fixed effects in place of state-by-decade fixed
effects (Table A17) and controlling directly for non-linear effects of extreme-heat exposure (Table
A18), which suggests that innovation exposure is not capturing higher order terms of county-level
extreme-temperature exposure. The results are also similar after dropping counties West of the 100th
meridian (Table A19) and removing the effect of local spillovers by estimating a version of innovation
exposure that excludes any variation in crop distress that occurs in other counties in the same state
(Table A20). These findings indicate that the results are not driven by differences in climate change or
innovation between the Eastern and Westerns parts of the US, or the effect of within-state production
spillovers

Sensitivity: Inference. One potential concern is that both climate realizations and the value of land
are spatially correlated. While Table 3 shows that our estimates are precise when we cluster by state,
which is a large geographic unit, in Table A21 we investigate the role of spatial correlation more
systematically. In particular, we estimate Hsiang (2010)’s implementation of Conley (1999) standard
errors, for several possible choices of the kernel cut-off distance. Reassuringly, the results are very
similar across specifications, even after allowing for spatial correlation across long distances.

Technology as the Mechanism: Exploiting Variation in Market Size. We found earlier that the
impact of temperature distress on technology development was stronger for crops with a larger
pre-period market size (see Table A10). If innovation were the mechanism driving the county-level
estimates, we would expect the results in Table 3 to be driven by counties that cultivate crops with a
larger national pre-period market size since these were the crops that benefited from the most induced
innovation. To measure the average market size of the crops grown in each county we compute the
following measure of the average, national market size of crops grown in 𝑖:

CropMixMarketSize𝑖 =
∑
𝑘

AreaPre
𝑖 ,𝑘∑

𝑘′ AreaPre
𝑖 ,𝑘′

· log
(
National Area Harvestedpre

𝑘

)
(5.5)
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We then estimate an augmented version of Equation (5.3) that includes a triple interaction between (i)
County-Level Extreme Exposure𝑖 ,𝑡 , (ii) InnovationExposure𝑖 ,𝑡 , and (iii) CropMixMarketSize𝑖 . If the
adaptive role of innovation were driving the results, we would expect the coefficient on the triple
interaction to be positive.

Table A22 reports estimates of this specification. In all columns, we find that the triple interaction
is positive and statistically significant. Thus, the crops toward which innovation was directed most
strongly are also the crops driving the mitigating impact of “innovation exposure” on land value
decline. This is consistent with our estimates of 𝜙 capturing the effect of innovation.

6 Aggregate Damage Mitigation From Directed Innovation

We now combine our empirical estimates and model to quantify the aggregate effect of innovation on
climate damage mitigation, both in and out of sample.

6.1 Methods

Definitions. For each US county 𝑖 in period 𝑡, we use our regression model from Equation 5.3 along
with the coefficient estimates thereof, to predict a location’s land value per acre as a function of climate
realizations. We define two scenarios, letting 𝑡0 and 𝑡1 represent our pre-period and post-period, re-
spectively. We first define a No Climate Change (NCC) scenario in which CountyLevelExtremeExposure𝑖 ,𝑡
and InnovationExposure𝑖 ,𝑡 are fixed at their 𝑡0 values, or

log AgrLandPriceNCC
𝑖 ,𝑡1

= �̂�𝑖 + �̂�𝑠(𝑖),𝑡1 + �̂� · CountyLevelExtremeExposure𝑖 ,𝑡0 + �̂� · InnovationExposure𝑖 ,𝑡0
+ �̂� ·

(
CountyLevelExtremeExposure𝑖 ,𝑡0 × InnovationExposure𝑖 ,𝑡0

)
(6.1)

We next define a No Innovation (NI) scenario in which the interactive effect of innovation exposure is
based on the 𝑡0 climate

log AgrLandPriceNI
𝑖 ,𝑡1

= �̂�𝑖 + �̂�𝑠(𝑖),𝑡1 + �̂� · CountyLevelExtremeExposure𝑖 ,𝑡1 + �̂� · InnovationExposure𝑖 ,𝑡1
+ �̂� ·

(
CountyLevelExtremeExposure𝑖 ,𝑡1 × InnovationExposure𝑖 ,𝑡0

)
(6.2)

We aggregate the local predictions to a national total value of agricultural land, in (contempora-
neous) dollars, using the pre-determined agricultural land areas in each US county. This translates
local counterfactuals into their aggregate national counterparts AgValNCC

𝑡1
and AgValNI

𝑡1
, the total value

of US cropland in counterfactual scenarios without climate change and with climate change but no
directed innovation. We compare these with the aggregate obtained from the in-sample fitted values
AgVal𝑡1 (i.e., a scenario with both climate change and directed innovation) to calculate the following
three statistics of interest. The first and second are the damage due to climate change in scenarios
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with and without innovation, expressed as a percentage of the total possible value absent climate
change:

PctDamageI := 100 ·
AgVal𝑡1 − AgValNCC

𝑡1

AgValNCC
𝑡1

PctDamageNI := 100 ·
AgValNI

𝑡1
− AgValNCC

𝑡1

AgValNCC
𝑡1

(6.3)

The third is the damage abated by directed technology, as a percentage of counterfactual damage
from climate change absent innovation:

PercentMitigation := 100 ·
(
PctDamageNI − PctDamageI

PctDamageNI

)
(6.4)

Model Interpretation. Equations 6.1 and 6.2, and hence the aggregate statistics based upon them,
have a structural interpretation in the model of Section 2.5 under the following conditions:28

Corollary 2. The counterfactual calculations correspond with the model’s counterfactuals if (i) prices are
perfectly rigid, or 𝜀 = 0, and (ii) climate-induced technology has zero marginal benefit when climate is “ideal”
or ExtremeExposure𝑖 = 0.

A formal derivation is given in Online Appendix B.6. The first assumption is to set the price
response across counterfactuals to zero. To justify this assumption, we are reassured by our findings
above suggesting that price effects have not been an important mechanism driving technology devel-
opment (Section 4.3.4) and that they play little role in our county-level estimates, even when included
as an endogenous control (Table 3). The second is to assume that climate-induced technology has
zero effect on land values when the county experiences zero climate distress. This normalization
biases our results for damage mitigation toward zero.

The model also provides structural interpretations for the counterfactual-relevant estimated co-
efficients (𝛽, 𝛾, 𝜙) as functions of the following deep parameters: the climate substitutability 𝑔21,
the direct productivity effect of extreme exposure 𝑔1, the farm profit share 𝛼, the inverse elasticity
of crop demand 𝜀, and the inverse elasticity of technology supply 𝜂. The internal validity of our
counterfactual estimates relies on these deep parameters, and hence the (𝛽, 𝛾, 𝜙), being stable across
the two scenarios. This assumption might be violated, for instance, if climate change alters market
structure in either upstream technology markets or downstream crop markets. Modeling such forces
is ultimately outside the scope of our analysis. Another important assumption is the separability of
innovation supply across crops. We discuss strategies to relax this assumption, using an extension of
the model, below.

28The state-by-time fixed effects have no structural interpretation in our model, and thus we hold them constant. In
numerical experiments corresponding to each result presented below, however, in which we randomize the value of each
state-by-time fixed effect based on the observed distribution, our results are stable. This suggests that the distribution of
state trends does not drive our findings.
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Figure 7: Historical Damage Mitigation Via Innovation
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Notes: The top panel displays the percent of economic damage from historical temperature change,
since 1960, mitigated by innovation across three model specifications: (i) the baseline (unweighted,
only fixed effects as controls), (ii) the agricultural-land-area-weighted estimate (only fixed effects as
controls), and (iii) the estimate that controls directly for the output prices and interactions (in addition
to all fixed effects). The bottom panel shows the aggregate economic damage from temperature change
(%) in each model, both with (blue) and without (orange) directed innovation. Standard errors were
computed via a bootstrap and 95% confidence intervals are reported.

6.2 Results: Historical Damage Mitigation

Figure 7 reports our estimates of the extent to which temperature damages since 1960 have been
mitigated by innovation (top panel), along with the extent of aggregate damage both with and
without innovation (bottom panel). The first column shows our baseline estimates, which treat the
1960s climate as the “no-climate-change” baseline and use our empirical estimates from the panel
specification in column 6 of Table 3. We show error bars corresponding to 95% confidence intervals
from a bootstrap procedure.29 Innovation has mitigated 19.9% of damage from climate change in our
sample. The savings amount to 1.7% of total agricultural land value in the US, or about 24 billion in
current USD.

The second column reports the same results if instead we use our coefficient estimates from the
area-weighted specification in Table 3. These findings suggest larger damages (9.4% in the observed
scenario with innovation) but very comparable percent mitigation (19.0%). The last column uses the

29The data were bootstrapped 1000 times clustering by county. Coefficient estimates from (5.3) were re-calculated and
the procedure described in Section 6.1 repeated for each pseudo-sample. The standard deviation of the set of aggregated
measures across pseudo-samples was used to generate the standard error of each value in Figure 7.
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version of the model that controls directly for prices and thus allows us to more directly implement
our assumption of rigid prices in the counterfactual.30 Reassuringly, this scenario implies almost
identical damage and mitigation to the baseline (6.6% and 19.4%, respectively).

Robustness: Alternative Counterfactual Trends for Innovation. Our baseline analysis assumes
that there is no aggregate resource constraint for innovation across crops. Thus, firms are not
forced to reduce investment in innovation in crop 𝑘 when they want to increase investment in crop
𝑘′; instead, they substitute away from other (non-agricultural) activities. We do not consider this
assumption extreme within the studied sample for two reasons. First, agricultural R&D investment,
and investment in biotechnology in particular, experienced unprecedented growth during our sample
period. From 1960 to 2000, private sector R&D investment in crop breeding increase nearly 1500%
(Figure A4). Second, much of the historical increase in agricultural biotechnology research was
redirected from other adjacent fields. Monsanto, now a ubiquitous player in seed development,
started as a non-agricultural chemical company specializing in food additives, cleaning products, and
pharmaceuticals. The companies that would become Syngenta began with a focus on pharmaceutical
research and chemical production.

Nevertheless, we investigate the extent to which our baseline estimate is sensitive to relaxing this
separability assumption. In Appendix C.4, we introduce a variant of our model in which research
investment across crops cannot exceed a threshold (e.g., the total research capacity of the biotechnology
sector), and this aggregate threshold can be increased at some cost. When this cost of increasing the
aggregate threshold is zero, we get back our baseline model. When this cost is infinitely convex, we
get a model with an immutable capacity for research and hence a purely “zero-sum” redistribution
of research in response to incentives. In all models in-between, there is a marginal crop that sees no
induced innovation when the climate shifts, and this marginal crop has a technology demand shock
less than or equal to some measure of central tendency of damages across crops.

We replicate this exercise in the numerical counterfactual in the following parametric way. We
calculate area-weighted quantiles 𝑞 ≤ 0.5 of the observed distribution of crop-level exposures and re-
solve the model under the assumption that the crop with exposure 𝑞 has zero induced innovation. Our
upper bound of 𝑞 = 0.5 simulates a “zero-sum” case, where increasing research investment in crop
𝑘 requires removing research investment from some crop(s) 𝑘′. Appendix Figure A6 shows damage
mitigation as a function of 𝑞. For choices of 𝑞 between 0 and 0.45, estimated damage mitigation is
almost identical to our baseline result. In the extreme, zero sum benchmark (𝑞 = 0.5), innovation still
mitigates 16.2% of damages; As expected, this is lower than our baseline estimate, but still far from
zero. The reason this number is still positive is that transferring innovation from less to more affected
crops dampens the most extreme climate damages.

Robustness: Crop Switching. We discussed how accounting for endogenous crop switching may
or may not change our estimates for directed innovation in response to climate damage in Section 4.3.6

30We do this, in a very slight variant of Equations 6.1 and 6.2, by holding prices fixed at their observed values.
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and Appendix F. We found in the data that an ex ante proxies for “switchability” had limited bite for
predicting innovation (Table A10) and that exposure to extreme temperatures induced relatively little
crop switching (Appendix F). Nonetheless, it may be important to take into account crop switching
as an alternative angle for adaptation in our counterfactual scenarios.

We explore two counterfactual scenarios that take into account crop switching. In the first, we
impose observed modern crop areas instead of pre-period areas to calculate heat exposure. This
intuitively provides an upper bound for the effects of land re-allocation on our main results, since it
retroactively assumes an (infeasible) allocation of crops from the future in the past. A disadvantage is
that modern crop allocations are clearly not pre-determined with respect to our regressors of interest,
and so the estimates come with all the associated caveats. This exercise yields lower estimates of the
level of climate damage, but a comparable number for damage mitigation (14.5%).

We next use our empirical model of planting patterns’ response to both climate change, outlined in
Appendix H, to estimate more realistically the interaction between crop switching and the mitigation
effects of technology. Using our empirical model of how temperature change has affected planting
allocations, we predict the area devoted to each crop in each county by the post-period. Using
predicted post-period planted areas, we again find smaller climate damages than we did using
observed planted areas but a comparable percentage mitigation (18.9%).

6.3 Projecting Future Climate Scenarios

In this final subsection, we apply the same methods developed for in-sample counterfactuals to
quantify the role of technology for mitigating expected future climate damages.

Methods. This analysis maintains the assumption that, while the relationship between climate
distress and local outcomes can change over time as a function of innovation, both the speed of
technology’s response to climate change and the effectiveness of that technology remain constant. In
the language of our model’s deep parameters, this requires stability of the climate substitutability 𝑔21,
the direct productivity effect of extreme exposure 𝑔1, the farm profit share 𝛼, the inverse elasticity of
crop demand 𝜀, and the inverse elasticity of technology supply 𝜂.

This assumption becomes more tenuous as we extend our predictions further into the future. On
the one hand, some ecologists and agronomists argue that temperatures may pass critical thresholds
beyond which innovation cannot help within biological constraints (Eisenstein, 2013). In the model,
this would map to a lower climate substitutability 𝑔21 and hence a reduction in the responsiveness
of technology to climate change, the effectiveness of that technology for boosting resilience, and
aggregate damage mitigation. On the other hand, innovation itself may experience a paradigm shift
that changes the rate and effectiveness of new technology development. The parallel advances of
direct gene editing techniques (e.g., with CRISPR-Cas9 technology), more precise DNA sequencing
technologies, and big-data techniques for analyzing both genetic and agricultural data may generate
such a paradigm shift (Taranto et al., 2018; Abdelrahman et al., 2018). In the model, this could map to
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a higher elasticity of supply 𝜂−1 and hence an increase in the responsiveness of technology to climate
change, the effectiveness of that technology for boosting resilience, and aggregate damage mitigation.

We use projections for daily temperature realizations from a surrogate/model mixed ensemble
method developed by Rasmussen et al. (2016) and applied in the state-of-the-art regional climate
projections of Hsiang et al. (2017).31 This method averages the predictions of a number of leading
climate models (28 to 44, depending on the scenario) that have a common input for greenhouse
gas concentrations corresponding to one of the International Panel on Climate Change’s (IPCC’s)
Representative Concentration Pathways. We use this model average to forecast the change in degree
days above each relevant cut-off temperature in each US county between a given future decade (2050-
2059 or 2090-2099) and the most recent decade (2010-2019).32 We use crop-level planted areas from the
2012 Census of Agriculture to estimate county-level temperature damage and construct our aggregate
damage measures, so that our future exposure measures are more precisely estimated. Finally, we
assume that state-level trends grow at a constant rate per year in and out of sample.

For our main projections, we use the ensemble forecast corresponding to two intermediate con-
centrations scenarios, RCP 4.5 and RCP 6.0. These respectively imply average warming of 1.8 and 2.4
degrees Celsius in the continental United States by the end of the century. They also differ slightly
in the timing of the emissions peak, with RCP 6.0 assuming lower concentrations in the early part
of the 21st century followed by a more pronounced ramp-up.33 The correlation between crop-level
extreme-heat exposure from the 1950s-2010s and projected extreme head exposure from the 2010s-
2090s under RCP 4.5 is 0.46, indicating that, while they are positively correlated, the distribution of
projected damages across crops does not exactly match the distribution of damages to date. We print
the predicted changes in Extreme Exposure in the second-to-last column of Table A1.

Results: Directed Technology and Future Climate Damage. Figure 8 replicates our main results
for percent mitigation and damages with and without innovation for each RCP and two end-points,
the middle of the century (2050-2059) and the end of the century (2090-2099). In all cases, innovation
mitigates between 13 and 16% of the damage, slightly lower than our in-sample estimates. This
damage mitigation implies larger savings in dollar terms (or percentages of total value), however,
since climate change escalates over time. Under the projected RCP 4.5 scenario, directed innovation
recovers 1.9% and 2.8% of all agricultural land value in the US respectively by mid-century and the

31We thank James Rising for invaluable advice on how to use these data, which are available at Rasmussen and Kopp
(2017). We defer to Rasmussen et al. (2016) and its accompanying documentation for details on data construction, but
two points are worth highlighting. First, each model has independent prediction for regional as well as aggregate climate
trends. Second, the forecasts use existing relationships between long-run mean temperatures and daily realizations to
impute forecasts for daily temperatures. Thus the projections account for broad climatic trends, but do not incorporate the
additional possibility of weather extremes becoming more (or less) likely conditional on the same mean temperatures.

32We adjust for the distinction between using the entire year for the projections and the growing season April to October
for our main analysis by multiplying these projected changes by the fraction of observed degree days, for each cutoff,
that occur during the growing season in the historical sample. Finally, we add our estimates of projected changes to our
observed degree days in the 2010s to create our forecast in level units.

33See the discussion on p. 2030 as well as Figure 5 of Rasmussen et al. (2016) for the specific implications for temperature
projections, and Meinshausen et al. (2011) for detailed discussion of the concentration pathways and their interpretation.
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Figure 8: Projected Damage Mitigation via Innovation Over the 21st Century
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Notes: The top panel displays the percent of economic damage from projected temperature change
mitigated by innovation across two climate scenarios and post-periods. The bottom panel shows
the aggregate economic damage from temperature change (%) in each model, both with (blue) and
without (orange) directed innovation. Standard errors were computed via a bootstrap and 95%
confidence intervals are reported.

end of the century. This translates in present-value terms, if we assume 3% inflation, to $218 billion
and $1.05 trillion. Table A23 provides damage estimates under each of these climate scenarios, as well
as the more extreme RCP 8.5 scenario (which allows for a ramp-up in emissions that is worse than
most reasonable notions of “business as usual”).34 Finally, we estimate projected economic damages
from climate change as well as the percent mitigated by technology development after accounting
for planted area changes due to crop switching. These estimates are reported in Appendix Table A24
and are very similar to our baseline projections.

The Value of Curbing Climate Change. Figure 9 compares the impact of directed innovation on
economic damage from temperature change to the impact of shifting the trend in carbon emissions. We
focus on the 2050-2059 end decade, in which RCP 6.0 is the most optimistic concentration pathway,
followed by RCPs 4.5 and 8.5 respectively. This comparison between the effects of technological
progress within a given climate scenario and the effects of moving between the climate scenarios
themselves (e.g., via reducing emissions) may be a more interpretable counterfactual than freezing
the climate in place, given the existing accumulation of greenhouse gases in the atmosphere.

34For the RCP 8.5 scenario in the 2090s, we truncate the maximum value of local GDD exposure at 15,000, which is far
beyond even the tails of the observed GDD distribution. This prevents a few large agricultural counties (less than 1% of the
sample) from having extreme predictions for the damages from climate change.
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Figure 9: Comparing Climate Scenarios, With and Without Innovation
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Comparing the blue columns across RCPs shows that land values are highest under RCP 6.0,
3.5% lower than this under RCP 4.5, and 9.4% lower than this under RCP 8.5. These estimates are
substantially larger than our prediction for the damage mitigation due to directed technology within
each emissions scenario, which is the difference between the orange and blue column in each pair.

Our estimates in Figure 9 also imply that the losses in percent terms from more damaging con-
centration pathways increase when innovation is shut off. This suggests a potentially important
interaction between social incentives for developing damage-mitigating technologies, as studied in
our analysis, and emission-mitigating technologies, which ultimately control greenhouse gas con-
centrations. In short, damage mitigation and emissions reductions are social substitutes: a more
damage-resilient economy faces a lower social cost of greenhouse gases, which may reduce incentives
to develop emissions reducing technology in the first place.

We leave a full model of the endogenous development of both emission-reduction and damage-
mitigation technologies to future research.

7 Conclusion

Are some sectors doomed to be ill-fated victims of climate change or do they have the tools to “innovate
around” nature’s new challenges? We study this question in US agriculture and document that
technological progress has reacted dramatically in response to threats posed by temperature change,
substantially dampening its economic impact. Combining comprehensive data on US agricultural
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innovation with a new measure of crop-specific temperature distress, we find that innovation has
been directed toward more distressed crops and toward technologies that are potentially relevant for
environmental adaptation. We next find that counties exposed to new climate-induced technology
development experienced more muted changes in land value as a result of temperature change.

Our best estimates suggest that the re-direction of technology has abated 20% of the economic
damage to US agriculture from extreme temperature since 1960, and may abate 13-16% over the
coming century. Adaptation via technological progress, according to our estimates, is economically
significant but not a panacea. Even in the US, a country that has a comparatively large and wealthy
agricultural sector and is a global leader in agricultural R&D, 80% of climate damage as we measure
it has been unchecked by technology development.

Our analysis leaves several important issues unexplored. One is the relationship between techno-
logical progress in advanced economies and global adaptation to climate change. We found that US
innovation responded strongly to within-US climatic distress and did not respond to non-US climatic
distress. This finding, combined also with the observation that agricultural innovations are highly
attuned to the environments for which they are designed (Moscona and Sastry, 2022), suggests that an
innovative response in wealthy, research-intensive countries may not boost global resilience to climate
change. In fact, directed innovation concentrated in only a few places could deepen global disparities
in agricultural productivity. Direct study of this issue is an important topic for future research.

A second is the interaction between incentives for damage-mitigating innovation and climate-
improving (e.g., emission-mitigating) innovation. The two are “social substitutes” in the following
sense: improving climate-resilience of production reduces the marginal harm of worse weather, and
improving the weather reduces the marginal benefit of climatic resilience. Studying the interaction
of these effects, positively or normatively, is an open area for further research.
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