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Figure A1: Climate Change Focus in Agricultural Biotechnology

Notes: The Syngenta homepage (top) and landing page for the Good Growth Plan (bottom), accessed
on January 19, 2021.
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Figure A2: Explanatory Power of ExtremeExposure vs. Uniform Temperature Cut-Offs

(a) Crop Yield
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(b) Crop Production
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Notes: The blue bars are from a histogram of within-R-squared measures for the relationship between
crop yields (A2a) or production (A2b) and exposure to temperatures above each temperature cut off
from 10 to 45 degrees Celsius. The specification also includes crop fixed effects. The dotted black
line reports the within-R-squared from the same specification in which our measure of extreme-heat
exposure is included on the right hand side.

Figure A3: Changes in Extreme Exposure over the Sample
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Notes: This figure displays the distribution of crop-level changes in ExtremeExposure between the
1950s and the 2010s.
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Figure A4: Trends in Private Sector R&D Investment
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Notes: Values are ratios relative to 1960, all estimated in 1996 USD. Data were compiled from Klotz
et al. (1995) and Fernandez-Cornejo (2004).
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Figure A5: Distribution of Extreme-Heat Exposure and Innovation Exposure Across Counties

(a) Local Extreme Exposure (1950s-2010)

(b) Innovation Exposure (1950s-2010s)

Notes: Counties are color coded by decile, with darker colors indicating higher deciles.
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Figure A6: Historical Damage Mitigation as a Function of “Zero Choice”
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Notes: The 𝑥-axis indicates what area-weighted quantile value of extreme exposure among crops was
used as the “zero effect” for the innovation counterfactual, as discussed in the main text. The baseline
estimate treats zero extreme exposure as the zero effect. The “zero-sum” effect uses the area-weighted
median across crops.
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Table A1: List of Crops in Main Sample and Summary Statistics

Crop		Name Species	Name
log	total	land	

area

Δ	Extreme	
Exposure	(1950s-

2010s)

Δ	Extreme	
Exposure	(1950s-
2010s),	Rank

Δ	Predicted	
Extreme	

Exposure	(2010s-
2090s)

Δ	Predicted	
Extreme	

Exposure	(2010s-
2090s),	Rank

escarole	endive	and	chicory Cichorium	endivia 9.3 1112.2 1 2278.7 9
lettuce	and	romaine Lactuca	sativa	var.	capitata 12.2 831.1 2 2233.5 10
collards Brassica	oleracea	var.	viridis 7.0 803.1 3 2584.5 7
radishes Raphanus	sativus	var.	radicula 10.0 800.3 4 2043.2 12
green	onions	and	shallots Allium	fistulosum 7.7 695.9 5 1472.4 23
carrots Daucus	carota 11.3 663.3 6 1526.7 22
kale Brassica	oleracea	var.	acephala 6.4 657.0 7 1932.8 13
chewings	fescue	seed Festuca	rubra	var.	commutata 10.1 565.3 8 1916.4 14
celery Apium	graveolens	var.	dulce 10.3 527.5 9 771.2 35
ladino	clover	seed Trifolium	repens 9.7 462.7 10 2724.5 4
spinach Spinacia	oleracea 10.6 413.6 11 2976.1 2
cabbage Brassica	oleracea	var.	capitata 11.6 393.2 12 1719.5 18
alsike	clover	seed Trifolium	hybridum 9.9 325.7 13 1408.8 24
bentgrass	seed Agrostis	stolonifera 10.0 318.3 14 801.3 31
dry	onions Allium	cepa 11.5 304.3 15 1644.7 20
lupine	seed Lupinus	angustifolius 9.3 300.7 16 3723.3 1
broccoli Brassica	oleracea	var.	italica 10.3 294.6 17 1084.9 29
white	clover	seed Trifolium	repens 10.1 252.7 18 452.7 44
perennial	ryegrass	seed Lolium	perenne 10.7 226.3 19 118.6 54
hairy	vetch	seed Vicia	villosa	sp.	varia 10.2 212.4 20 242.9 49
beets Beta	vulgaris 9.7 196.9 21 1111.3 28
vetch	seed Vicia	sativa	ssp.	nigra 11.3 187.2 22 1638.6 21
cauliflower Brassica	oleracea	var.	botrytis 10.0 185.3 23 1220.1 26
other	vetch	seed Astragalus	cicer 8.8 180.0 24 245.9 48
sugar	beets Beta	vulgaris	var.	saccharifera 13.6 171.5 25 689.9 39
muskmelons Cucumis	melo 11.8 129.1 26 1150.2 27
squash Cucurbita	mixta 10.6 120.8 27 582.5 40
barley Hordeum	vulgare 16.5 102.1 28 1687.2 19
lentils Lens	culinaris 10.6 79.1 29 131.4 53
asparagus Asparagus	officinalis 12.0 56.4 30 216.6 50
crimson	clover	seed Trifolium	incarnatum 10.9 52.6 31 931.5 30
green	lima	beans Phaseolus	lunatus 11.3 51.1 32 515.2 43
common	ryegrass	seed Lolium	multiflorum 11.7 46.6 33 5.7 68
sudangrass	seed Sorghum	x	drummondii 10.4 23.6 34 111.7 56
sorghum Sorghum	bicolor 16.5 8.4 35 47.0 63
cotton Gossypium	hirsutum 16.5 4.7 36 17.0 66
dry	field	and	seed	peas Vigna	unguiculata 12.7 4.2 37 1.2 69
watermelons Citrullus	lanatus 12.5 0.9 38 60.5 61
emmer	and	spelt Triticum	spelta 10.9 -0.2 39 2636.3 6
eggplant Solanum	melongena 8.2 -1.6 40 37.3 64
birdsfood	trefoil	seed Lotus	corniculatus 8.9 -1.7 41 1727.5 16
sunflower	seed Helianthus	annuus 9.5 -6.3 42 24.7 65
green	peas Pisum	sativum 9.7 -9.7 43 2674.1 5
cowpeas Vigna	unguiculata 11.2 -14.2 44 7.9 67
coastal	bermuda	grass Cynodon	dactylon 11.7 -21.9 45 538.0 41
rice Oryza	sativa 14.3 -32.1 46 717.4 37
okra Hibiscus	sabdariffa 9.8 -33.1 47 529.7 42
corn Zea	mays 18.3 -33.7 48 72.2 60
soybeans Glycine	max 16.9 -34.9 49 86.0 59
tall	fescue	seed Festuca	arundinacea 11.8 -36.1 50 2507.9 8
turnips Brassica	campestris 9.0 -36.2 51 170.2 52
buckwheat Fagopyrum	esculentum 10.8 -37.4 52 380.0 45
mung	beans Vigna	radiata 9.5 -45.0 53 51.7 62
rye Secale	cereale 14.1 -48.5 54 2848.7 3
pumpkins Cucurbita	maxima 8.9 -55.1 55 101.2 57
tobacco Nicotiana	tabacum 13.9 -57.0 56 321.8 47
peanuts Arachis	hypogaea 13.0 -72.9 57 112.5 55
alfalfa	and	alfalfa	mixtures Medicago	sativa 17.1 -76.7 58 773.9 34
redtop	seed Panicum	virgatum 11.1 -89.4 59 211.0 51
orchardgrass	seed Dactylis	glomerata 10.9 -91.4 60 92.0 58
oats Avena	sativa 17.1 -121.1 61 2228.9 11
wheat Triticum	aestivum 17.3 -124.3 62 1790.9 15
lespedeza Lespedeza	cuneata 14.9 -143.9 63 1720.6 17
popcorn Sapium	sebiferum 11.7 -145.1 64 693.7 38
durum	wheat Triticum	durum 13.9 -149.6 65 793.2 33
sweetclover	seed Melilotus	albus 11.6 -155.1 66 797.5 32
flaxseed Linum	usitatissimum 14.8 -203.4 67 757.4 36
bluegrass	(junegrass)	seed Poa	pratensis 10.8 -214.0 68 360.1 46
bromegrass	seed Bromus	inermis 10.4 -337.3 69 1241.8 25
Notes:	This	table	reports	the	crop	name;	species	name	(from	EcoCrop);	log	of	planted	area	in	1959;	change	in	extreme	exposure	from	the	1950s-2010s;	rank	in	
change	in	extreme	exposure	from	the	1950s-2010s;	predited	change	in	extreme	exposure	from	the	2010s-2090s	(RCP	4.5);	and	rank	in	predited	change	in	
extreme	exposure	from	the	2010s-2090s	(RCP	4.5),		for	all	crops	in	the	baseline	analysis.
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Table A2: Temperature Distress and Crop Yields

(1) (2) (3) (4)

Staples	(Corn,	
Wheat,	Soy)

ExtremeExposure	/	1000 -0.0915*** -0.0774*** -0.0891*** -0.131***
(0.0179) (0.0178) (0.0172) (0.0383)

County	Fixed	Effects Yes Yes Yes Yes
Crop	Fixed	Effects Yes Yes Yes Yes
Only	East	of	100th	Meridian No Yes No No
Crop	Fixed	Effects	x	East	of	100th	Meridian No No Yes Yes
Observations 26,566 22,621 26,566 5,556
R-squared 0.937 0.947 0.942 0.959

log	Yield

Notes:	The	unit	of	observation	is	a	crop-county.		The	outcome	variable	is	crop	yield	measured	in	the	1959	US	Census	of	
Agriculture.	In	column	4,	we	restrict	the	sample	to	corn,	wheat,	and	soy.	The	fixed	effects	included	in	each	specification	are	
noted	at	the	bottom	of	each	column.	Standard	errors	are	clustered	by	state		and	*,	**,	and	***	indicate	significance	at	the	10%,	
5%,	and	1%	levels.	

All	Crops

Table A3: Temperature Distress and Crop Varieties: Plant Variety Protection Certificates

(1) (2) (3) (4) (5)

Δ	ExtremeExposure 0.0161* 0.0209* 0.0184** 0.0397*** 0.0410***
(0.00933) (0.0111) (0.00887) (0.0148) (0.0144)

Log	area	harvested Yes Yes Yes Yes Yes
Pre-period	climate	controls No Yes Yes Yes Yes
Pre-period	PVP	certificates	(1970-1980) No No Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. No No No Yes Yes
Average	Temperature	Change No No No No Yes
Observations 62 62 62 62 62

Dependent	Variable	is	Plant	Variety	Protection	(PVP)	Certificates

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	plant	variety	
protection	(PVP)	certificates	released	since	1980.	ExtremeExposure	is	similarly	computed	as	the	change	in	the	
number	of	crop-specific	extreme	GDDs	between	the	1980s	and	2010s,	while	the	pre-period	is	defined	as	
1970-1980	since	PVP	was	intrduced	in	1970.	Robust	standard	errors	are	reported	in	parentheses	and	*,	**,	
and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	
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Table A4: Temperature Distress and Crop Varieties: GDDs in Excess of 30◦ C
(1) (2) (3) (4) (5)

Δ	ExtremeExposure	(GDD	over	30	C) 0.00443*** 0.00476*** 0.00347** 0.00361** 0.00362*
(0.00163) (0.00158) (0.00148) (0.00164) (0.00208)

Δ	ExtremeExposure	(GDD	over	30	C) 0.00115 0.00113 6.01e-05 -0.00226 -0.00178
(0.00240) (0.00243) (0.00205) (0.00234) (0.00245)

Δ	ExtremeExposure	(our	measure	with	crop-level	variaiton) 0.0137* 0.0143* 0.0135** 0.0244*** 0.0267***
(0.00748) (0.00778) (0.00591) (0.00840) (0.00902)

Log	area	harvested Yes Yes Yes Yes Yes
Pre-period	climate	controls No Yes Yes Yes Yes
Pre-period	PVP	certificates	(1970-1980) No No Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. No No No Yes Yes
Average	Temperature	Change No No No No Yes
Observations 69 69 69 69 69

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	released.	In	Panel	A,	the	
independent	variable	of	interest	is	the	change	in	the	number	of	growing	degree	days	(GDDs)	in	excess	of	30	degrees	Celsius.	In	Panel	
B,	our	baseline	measure	of	Δ	ExtremeExposure	that	incorporates	crop-level	variation	in	temperature	sensitivity	is	included	
alongside	the	number	of	growing	degree	days	(GDDs)	in	excess	of	30	degrees	Celsius.		Robust	standard	errors	are	reported	in	
parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Panel	A:	Extreme	Exposure	as	Growing	Degree	Days	over	30C

Panel	B:	Growing	Degree	Days	over	30C	Alongside	Baseline	Measure

Table A5: Temperature Distress and Crop Varieties: Crop Area Measurement Sensitivity
(1) (2) (3) (4) (5) (6)

Sample	Period 1980-2016

Δ	ExtremeExposure 0.0213*** 0.0214*** 0.0156*** 0.0200*** 0.0253*** 0.0318***
(0.00420) (0.00457) (0.00416) (0.00559) (0.00710) (0.00866)

Δ	ExtremeExposure 0.0196*** 0.0193*** 0.0144*** 0.0185*** 0.0224*** 0.0321***
(0.00437) (0.00453) (0.00398) (0.00545) (0.00690) (0.00870)

Log	area	harvested Yes Yes Yes Yes Yes Yes
Pre-period	climate	controls No Yes Yes Yes Yes Yes
Pre-period	varieties No No Yes Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. No No No Yes Yes Yes
Average	Temperature	Change No No No No Yes No
Observations 65 65 65 65 65 65

1950-2016

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	released	and	the	
sample	period	for	each	specification	is	listed	at	the	top	of	each	column.	ExtremeExposure	was	computed	using	crop-by-
county	areas	from	the	1955	Census	of	Agriculture	in	Panel	A,	and	using	the	average	of	1955	and	1959	in	Panel	B.	Robust	
standard	errors	are	reported	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Panel	A:	Crop-by-County	Areas	from	the	1955	Census	of	Agriculture

Panel	B:	Average	Between	1955	and	1959	Measures
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Table A6: Temperature Distress and Crop Varieties: Geographic Controls

(1) (2) (3) (4) (5)

Δ	ExtremeExposure 0.0241*** 0.0288*** 0.0231*** 0.0254*** 0.0355***
(0.00749) (0.00815) (0.00651) (0.00733) (0.00894)

Log	area	harvested Yes Yes Yes Yes Yes
Pre-period	climate	controls Yes Yes Yes Yes Yes
Pre-period	varieties Yes Yes Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. Yes Yes Yes Yes Yes
Average	Temperature	Change Yes Yes Yes Yes Yes
Area-weighted	latitude	and	longitude Yes Yes No No Yes
Area-weighted	latitude	and	longitude	squared No Yes No No Yes
State	shares	for	ten	most	agticultural	states No No Yes No Yes
Share	cropland	irrigated No No No Yes Yes
Observations 69 69 69 69 69

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	released.	
The	controls	included	in	each	specification	are	noted	at	the	bottom	of	each	column.		Robust	standard	errors	are	
reported	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Table A7: Temperature Distress and Crop Varieties: East of the 100th Meridian
(1) (2) (3) (4) (5) (6)

Sample	Period 1980-2016

Δ	ExtremeExposure 0.00157*** 0.00173*** 0.00123*** 0.00140*** 0.00142** 0.00158**
(0.000451) (0.000467) (0.000441) (0.000525) (0.000590) (0.000652)

Log	area	harvested Yes Yes Yes Yes Yes Yes
Pre-period	climate	controls No Yes Yes Yes Yes Yes
Pre-period	varieties No No Yes Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. No No No Yes Yes Yes
Average	Temperature	Change No No No No Yes No
Observations 69 69 69 69 69 69

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	released	and	the	
sample	period	for	each	specification	is	listed	at	the	top	of	each	column.	ExtremeExposure	was	computed	using	only	
production	and	temperature	data	from	East	of	the	100th	meridian.	Robust	standard	errors	are	reported	in	parentheses	and	
*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

1950-2016
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Table A8: Temperature Distress and Crop Varieties: Economic Controls

(1) (2) (3) (4) (5) (6) (7)

Δ	ExtremeExposure 0.0226*** 0.0931*** 0.0902*** 0.0282*** 0.0133* 0.0187*** 0.0188***
(0.00669) (0.0268) (0.0292) (0.00912) (0.00777) (0.00686) (0.00631)

US	Experiment	Station	Exposure	(area-weighted) -0.264
(1.359)

log	Insured	Acres 0.420***
(0.0766)

log	Total	Subsidies	($) 0.366***
(0.0824)

log	Exports	-	log	Imports 0.170**
(0.0830)

Share	global	cropland	in	the	US 5.278***
(1.546)

Profits	per	farm	(area-weighted) 0.00490*
(0.00255)

log	total	profits	(area-weighted) 0.561**
(0.269)

Log	area	harvested Yes Yes Yes Yes Yes Yes Yes
Pre-period	climate	controls Yes Yes Yes Yes Yes Yes Yes
Pre-period	varieties Yes Yes Yes Yes Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. Yes Yes Yes Yes Yes Yes Yes
Average	Temperature	Change Yes Yes Yes Yes Yes Yes Yes
Observations 69 18 18 27 35 69 69

(1) (2) (3) (4) (5) (6) (7)

Δ	ExtremeExposure 0.0226*** 0.0931*** 0.0902*** 0.0282*** 0.0133* 0.0187*** 0.0188***
(0.00669) (0.0268) (0.0292) (0.00912) (0.00777) (0.00686) (0.00631)

US	Experiment	Station	Exposure	(area-weighted) ✓

log	Insured	Acres ✓

log	Total	Subsidies	($) ✓

log	Exports	-	log	Imports ✓

Share	global	cropland	in	the	US ✓

Profits	per	farm	(area-weighted) ✓

log	total	profits	(area-weighted) ✓
Log	area	harvested Yes Yes Yes Yes Yes Yes Yes
Pre-period	climate	controls Yes Yes Yes Yes Yes Yes Yes
Pre-period	varieties Yes Yes Yes Yes Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. Yes Yes Yes Yes Yes Yes Yes
Average	Temperature	Change Yes Yes Yes Yes Yes Yes Yes
Observations 69 18 18 27 35 69 69

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	released.	The	controls	included	in	each	
specification	are	noted	at	the	bottom	of	each	column.	Data	on	the	location	of	US	crop	experiment	stations	are	from	Kantor	and	Whalley	(2019).	Farm	
profits	were	computed	from	the	US	Census	of	Agriculturein	the	baseline	year	(1959).	Data	on	crop-level	trade	and	global	production	are	from	FAO	
STAT	and	data	on	insurance	coverage	and	subsidies	are	from	the	USDA	Risk	Management	Agency's	(RMA)	Summary	of	Business	Reports,	which	we	
digitized.			Robust	standard	errors	are	reported	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	released.	The	controls	included	in	each	
specification	are	noted	at	the	bottom	of	each	column.	Data	on	the	location	of	US	crop	experiment	stations	are	from	Kantor	and	Whalley	(2019).	Farm	
profits	were	computed	from	the	US	Census	of	Agriculturein	the	baseline	year	(1959).	Data	on	crop-level	trade	and	global	production	are	from	FAO	
STAT	and	data	on	insurance	coverage	and	subsidies	are	from	the	USDA	Risk	Management	Agency's	(RMA)	Summary	of	Business	Reports,	which	we	
digitized.			Robust	standard	errors	are	reported	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Table A9: Temperature Distress and Crop Varieties: Panel Estimates

(1) (2) (3) (4)

EE,	second	lead 0.000341

(0.00272)

EE,	first	lead 0.000657 0.000745 0.00135

(0.00187) (0.00233) (0.00169)

EE,	current	decade 0.00349*** 0.00432*** 0.00465** 0.00263**

(0.00127) (0.00166) (0.00227) (0.00115)

EE,	first	lag 0.00308**

(0.00152)

Crop	&	Year	Fixed	Effects Yes Yes Yes Yes

log	Area	Harvested	x	Year	Fixed	Effects Yes Yes Yes Yes

Pre-Period	Varieties	x	Year	Fixed	Effects Yes Yes Yes Yes

Observations 483 414 345 345

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop-decade	pair.	Standard	errors,	clustered	by	crop,	are	reported	in	parentheses	

and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	
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Table A10: Temperature Distress and Crop Varieties: Heterogeneity Analysis
(1) (2) (3) (4) (5) (6) (7) (8)

Δ	ExtremeExposure 0.00438 0.0237*** 0.0187*** 0.0215** 0.0235*** 0.0325*** 0.0135** 0.0145***
(0.00510) (0.00667) (0.00622) (0.00854) (0.00866) (0.00912) (0.00604) (0.00545)

Δ	ExtremeExposure	x	 	

Above	Median	US	Area	(=1) 0.0258***
(0.00741)

Above	Median	as	Share	of	Global	Area	(=1) -0.00948
(0.0112)

Above	Median	Net	Exports	(=1) -0.00283
(0.0113)

Above	Median	"Switchability"	(=1) 0.00111
(0.00900)

Annual	Crop	(=1) 0.00561
(0.00920)

Cold-Weather	Crop	(=1) -0.0162*
(0.00883)

Not	Perishable	(=1) 0.00130
(0.0123)

US	Experiment	Station	Exposure 0.213
(0.169)

Log	area	harvested Yes Yes Yes Yes Yes Yes Yes Yes
Pre-period	climate	controls Yes Yes Yes Yes Yes Yes Yes Yes
Pre-period	varieties Yes Yes Yes Yes Yes Yes Yes Yes
Cuf-off	temp.	and	cut-off	temp	sq. Yes Yes Yes Yes Yes Yes Yes Yes
Observations 69 35 35 69 69 69 69 69

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	vairable	is	the	number	of	crop-specific	varieties.	Each	column	in	includes	an	interaction	term	between	
crop-level	extreme	heat	exposure	and	a	different	crop-level	variable,	noted	in	the	leftmost	column.	Robust	standard	errors	are	reported	in	parentheses	and	
*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Table A11: Temperature Distress and Crop Varieties: Effects by Type of Inventor
(1) (2) (3) (4)

Private	Sector	
Firms

Public	Sector Universities None	of	the	
Above

Δ	ExtremeExposure 0.0476*** 0.00424 0.00217 0.0194**
(0.0181) (0.0147) (0.0128) (0.00831)

Log	area	harvested Yes Yes Yes Yes
Pre-period	climate	controls Yes Yes Yes Yes
Pre-period	PVP	certificates	(1970-1980) Yes Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. Yes Yes Yes Yes
Observations 62 62 62 62

Plant	Variety	Protection	Certificates	Awarded	to:

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	plant	variety	
protection	(PVP)	certificates	released	since	1980	awarded	to	the	noted	type	of	inventor.	
ExtremeExposure	computed	as	the	change	in	the	number	of	crop-specific	extreme	GDDs	between	the	
1980s	and	2010s,	while	the	pre-period	is	defined	as	1970-1980	since	PVP	was	intrduced	in	1970.	
Robust	standard	errors	are	reported	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	
5%,	and	1%	levels.	
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Table A12: Temperature Distress and Crop Varieties: Within-Inventor Re-Direction of Technology

(1) (2) (3)

Sample: All	Applicants
Applicants	
with	>5	

Certificates

Applicants	
with	>10	
Certificates

Δ	ExtremeExposure 0.0408*** 0.0466*** 0.0525***
(0.0147) (0.0158) (0.0169)

Applicant	Fixed	Effects Yes Yes Yes
All	Baseline	Controls Yes Yes Yes
Observations 45,689 12,200 7,198

Dependent	Variable	is	Plant	Variety	Protection	
Certificates

Notes:	The	unit	of	observation	is	a	crop-by-applicant.	The	outcome	variable	is	the	
number	of	crop-specific	plant	variety	protection	(PVP)	certificates	released	by	each	
applicant	since	1980.	ExtremeExposure	is	similarly	computed	as	the	change	in	the	
number	of	crop-specific	extreme	GDDs	between	the	1980s	and	2010s,	while	the	
pre-period	is	defined	as	1970-1980	since	PVP	was	intrduced	in	1970.	Standard	
errors,	double-clustered	by	crop	and	applicant,	are	reported	in	parentheses	and	*,	
**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Table A13: Temperature Distress and Patenting, by Class

(1) (2) (3) (4) (5) (6)

Harvest
Post-
Harvest

Crop	
Varieties	
(Baseline)

Fertilizing,	
Planting,	

and	Sowing	
Patents	
(A01C)

Soil	
Working	
Patents	
(A01B)

All	Planting	
and	Soil	
Working	
Patents	

(A01B	&	C)

Harvester	
and	Mower	
Patents	
(A01D)

Post-
Harvest	

Technology	
Patents	
(A01F)

Δ	ExtremeExposure 0.0136*** 0.00930** 0.00860 0.00939** 0.000824 -0.00496
(0.00372) (0.00406) (0.00623) (0.00439) (0.00426) (0.00728)

All	Baseline	Controls Yes Yes Yes Yes Yes Yes
Observations 69 69 69 69 69 69

Dependent	variable	is	change	in:

Notes:	The	unit	of	observation	is	a	crop.	The	dependent	variable	in	each	specification	is	noted	at	the	top	of	
each	column;	in	each	case,	it	is	a	different	technology	type,	either	seed	varieties	(column	1)	or	patent	
grants	from	a	particular	patent	class,	with	the	CPC	class	noted	in	the	technology	description	(columns	2-6).	
Baseline	controls	are	included	in	each	specification,	and	the	pre-period	innovation	control	in	each	column	
corresponds	to	the	number	of	variety	releases	or	patent	grants	from	1900-1960	corresponding	to	the	
technology	class(es)	of	the	dependent	variable.	Robust	standard	errors	are	reported	in	parentheses	and	*,	
**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Planting	and	Pre-Harvest
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Table A14: The Effects of Drought and Extreme Cold on Innovation
(1) (2) (3) (4) (5)

Δ	ExtremeHeatExposure 0.0200*** 0.0202*** 0.0160*** 0.0214*** 0.0225***
(0.00486) (0.00447) (0.00434) (0.00598) (0.00722)

Δ	DroughtExposure 0.358* 0.493* 0.286 0.284 0.258
(0.216) (0.264) (0.355) (0.327) (0.382)

Δ	ExtremeColdExposure 0.000653 -0.000427 -0.00245 -0.00352 -0.00305
(0.00321) (0.00384) (0.00343) (0.00331) (0.00382)

Log	area	harvested Yes Yes Yes Yes Yes
Pre-period	climate	controls No Yes Yes Yes Yes
Pre-period	varieties No No Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. No No No Yes Yes
Average	Temperature	Change No No No No Yes
Observations 69 69 69 69 69

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	
released	and	the	sample	period	for	each	specification	is	listed	at	the	top	of	each	column.	The	controls	
included	in	each	specification	are	noted	at	the	bottom	of	each	column.	Robust	standard	errors	are	
reported	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Table A15: County-Level Estimates: Direct Effect of Temperature Distress
(1) (2) (3)

Dependent	Variable: log	Land	Value	
per	Acre

Revenue	per	
Acre	from	Crop	
Production

Revenue	per	
Acre	from	Non-

Crop	
Production

County-Level	Extreme	Exposure -0.437*** -147.9*** 0.0634
(0.104) (54.72) (39.19)

County	Fixed	Effects Yes Yes Yes
State	x	Decade	Fixed	Effects Yes Yes Yes
Observations 6,000 5,880 5,876
R-squared 0.988 0.654 0.606

Notes:	The	unit	of	observation	is	a	county-year.	All	columns	include	county	and	state-by-census	
round	fixed	effects.	Standard	errors	are	double	clustered	at	the	county	and	state-by-decade	levels	
and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	
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Table A16: County-Level Estimates: Crop Revenue and Farm Profits
(1) (2) (3) (4) (5) (6)

County-Level	Extreme	Exposure -0.829** -2.029*** -1,278** -4,143*** -8.451* -4.457*
(0.358) (0.411) (498.4) (1,449) (5.045) (2.678)
[0.446] [0.509] [612.6] [1,818] [6.051] [3.299]

County-Level	Extreme	Exposure	x	Innovation	Exposure 0.234** 0.570*** 339.7*** 1,252*** 2.687 0.923
(0.114) (0.113) (128.6) (450.4) (1.694) (0.783)
[0.139] [0.135] [134.4] [560.6] [2.068] [0.875]

County	Fixed	Effects Yes Yes Yes Yes Yes Yes
State	x	Decade	Fixed	Effects Yes Yes Yes Yes Yes Yes
Weighted	by	Agricultural	Land	Area No Yes No Yes No Yes
Observations 5,880 5,880 5,986 5,986 5,982 5,982
R-squared 0.979 0.985 0.727 0.814 0.698 0.886

Dependent	Variable	is:

Notes:	The	unit	of	observation	is	a	county-year.		Standard	errors,	double	clustered	at	the	county	and	state-by-decade	levels,	are	
reported	in	parentheses,	and	standard	errors	clustered	by	state	are	reported	in	brackets,		and	*,	**,	and	***	indicate	significance	at	the	
10%,	5%,	and	1%	levels.	

log	Crop	Revenue	per	
Acre

Total	Agricultural	
Profits

Agricultural	Profits	per	
Acre

Table A17: County-Level Estimates: No State Fixed Effects
(1) (2) (3) (4) (5) (6) (7)

County-Level	Extreme	Exposure -0.768*** -1.756*** -0.690*** -1.023*** -0.797*** -0.200 -0.330**
(0.199) (0.347) (0.198) (0.195) (0.206) (0.127) (0.162)
[0.258] [0.464] [0.253] [0.247] [0.259] [0.0890] [0.137]

County-Level	Extreme	Exposure	x	Innovation	Exposure 0.306*** 0.643*** 0.251*** 0.319*** 0.270*** 0.0925** 0.136***
(0.0858) (0.124) (0.0674) (0.0788) (0.0675) (0.0371) (0.0439)
[0.112] [0.164] [0.0834] [0.102] [0.0830] [0.0291] [0.0368]

County	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Decade	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Weighted	by	Agricultural	Land	Area No Yes No No No No Yes
Output	Prices	and	Interactions No No Yes No Yes No No
Avg.	Temp.	(°C)	and	Interactions No No No Yes Yes No No
Observations 6,000 6,000 5,990 6,000 5,990 20,931 20,931
R-squared 0.986 0.987 0.986 0.986 0.986 0.968 0.972

Dependent	Variable	is	log	Land	Value	per	Acre

Long	Difference	Estimates	(1950s-2010s) Panel	Estimates

Notes:	The	unit	of	observation	is	a	county-year.		Standard	errors,	double	clustered	at	the	county	and	state-by-decade	levels,	are	reported	in	
parentheses,	and	standard	errors	clustered	by	state	are	reported	in	brackets,	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

16



Table A18: County-Level Estimates: Controlling for Higher Order Terms
(1) (2) (3) (4) (5) (6) (7)

County-Level	Extreme	Exposure -0.861*** -1.550*** -0.838*** -0.872*** -0.798*** -0.232** -0.391***
(0.211) (0.238) (0.203) (0.238) (0.226) (0.107) (0.132)
[0.265] [0.301] [0.245] [0.305] [0.279] [0.105] [0.103]

County-Level	Extreme	Exposure	x	Innovation	Exposure 0.259*** 0.445*** 0.247*** 0.261*** 0.240*** 0.0923*** 0.130***
(0.0755) (0.0718) (0.0725) (0.0786) (0.0757) (0.0315) (0.0320)
[0.0942] [0.0885] [0.0876] [0.0988] [0.0921] [0.0251] [0.0239]

County	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
State	x	Decade	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
LocalEE	Squared Yes Yes Yes Yes Yes Yes Yes
Weighted	by	Agricultural	Land	Area No Yes No No No No Yes
Output	Prices	and	Interactions No No Yes No Yes No No
Avg.	Temp.	(°C)	and	Interactions No No No Yes Yes No No
Observations 6,000 6,000 5,990 6,000 5,990 20,931 20,931
R-squared 0.989 0.991 0.989 0.989 0.989 0.979 0.984

Dependent	Variable	is	log	Land	Value	per	Acre

Long	Difference	Estimates	(1950s-2010s) Panel	Estimates

Notes:	The	unit	of	observation	is	a	county-year.	All	columns	include	local	extreme	exposure	squared	on	the	right	hand	side	of	the	regression.			
Standard	errors,	double	clustered	at	the	county	and	state-by-decade	levels,	are	reported	in	parentheses,	and	standard	errors	clustered	by	
state	are	reported	in	brackets.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Table A19: County-Level Estimates: Sample East of 100th Meridian
(1) (2) (3) (4) (5) (6) (7)

County-Level	Extreme	Exposure -0.880*** -1.229*** -0.751*** -0.845*** -0.656** -0.210* -0.260**
(0.263) (0.278) (0.233) (0.290) (0.272) (0.121) (0.129)
[0.339] [0.360] [0.285] [0.383] [0.346] [0.128] [0.105]

County-Level	Extreme	Exposure	x	Innovation	Exposure 0.311*** 0.408*** 0.269*** 0.295*** 0.245** 0.0960** 0.127***
(0.103) (0.0990) (0.0934) (0.106) (0.0972) (0.0373) (0.0381)
[0.133] [0.125] [0.117] [0.139] [0.123] [0.0299] [0.0273]

County	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
State	x	Decade	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Weighted	by	Agricultural	Land	Area No Yes No No No No Yes
Output	Prices	and	Interactions No No Yes No Yes No No
Avg.	Temp.	(°C)	and	Interactions No No No Yes Yes No No
Observations 4,852 4,852 4,842 4,852 4,842 16,956 16,956
R-squared 0.991 0.993 0.991 0.991 0.991 0.981 0.987

Dependent	Variable	is	log	Land	Value	per	Acre	

Long	Difference	Estimates	(1950s-2010s) Panel	Estimates

Notes:	The	unit	of	observation	is	a	county-year.		The	estimation	sample	is	restricted	to	counties	East	of	the	100th	Meridian	in	all	specifications.	
Standard	errors,	double	clustered	at	the	county	and	state-by-decade	levels,	are	reported	in	parentheses,	and	standard	errors	clustered	by	state	
are	reported	in	brackets,	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Sample	is	Restricted	to	Counties	East	of	the	100th	Meridian
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Table A20: County-Level Estimates: “Leave State Out” Estimates
(1) (2) (3) (4) (5) (6) (7)

County-Level	Extreme	Exposure -0.707*** -1.293*** -0.693*** -0.699*** -0.651*** -0.204* -0.368***
(0.208) (0.220) (0.194) (0.226) (0.214) (0.109) (0.140)
[0.261] [0.273] [0.232] [0.287] [0.261] [0.104] [0.0998]

County-Level	Extreme	Exposure	x	Innovation	Exposure 0.192** 0.339*** 0.187** 0.188** 0.181** 0.0830** 0.121***
(0.0770) (0.0752) (0.0719) (0.0772) (0.0735) (0.0322) (0.0333)
[0.0966] [0.0931] [0.0866] [0.0965] [0.0885] [0.0259] [0.0261]

County	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
State	x	Decade	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Weighted	by	Agricultural	Land	Area No Yes No No No No Yes
Output	Prices	and	Interactions No No Yes No Yes No No
Avg.	Temp.	(°C)	and	Interactions No No No Yes Yes No No
Observations 6,000 6,000 5,990 6,000 5,990 20,966 20,966
R-squared 0.989 0.991 0.989 0.989 0.989 0.979 0.984

Dependent	Variable	is	log	Land	Value	per	Acre	

InnovationExposure	is	Computed	Excluding	the	State	in	which	the	County	is	Located

Long	Difference	Estimates	(1950s-2010s) Panel	Estimates

Notes:	The	unit	of	observation	is	a	county-year.	Innovation	exposure	is	calculated	after	excluding	from	the	sample	all	counties	in	the	same	state	as	
the	county	of	interest.	Standard	errors,	double	clustered	at	the	county	and	state-by-decade	levels,	are	reported	in	parentheses,	and	standard	errors	
clustered	by	state	are	reported	in	brackets,	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Table A21: County-Level Estimates: Alternative Standard Error Clusters

(1) (2) (3) (4) (5) (6)

250 500 1000 1500 2000

County-Level	Extreme	Exposure 4.828 3.812 3.797 4.825 8.404 3.22
County-Level	Extreme	Exposure	x	Innovation	Exposure 3.894 3.233 2.808 2.957 4.065 2.64

County	Fixed	Effects Yes Yes Yes Yes Yes Yes
State	x	Decade	Fixed	Effects Yes Yes Yes Yes Yes Yes
Notes:	Coefficient	estimate	t-statistics	from	the	baseline	county-level	specification	(Table	3,	Column	1)	with	alternative	
standard	error	clustering	strategies.	Columns	1-5	follow	Hsiang	(2010)'s	implementation	of	Conley	(2008)	standard	
errors,	for	five	different	values	of	the	kernel	cut	off	distance	(measured	in	km).	In	column	6,	standard	errors	are	clustered	by	
state.	

Coefficient	t-statistic	for	kernel	cut-off	distance	(km): State-
level	
cluster
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Table A23: Climate Change Damage, With and Without Innovation: All Projection Estimates

(1) (2) (3) (4) (5)

Scenario End	Decade
Damage	with	

Innovation	(Percent)
Damage	without	

Innovation	(Percent)

Mitigated	By	
Innovation	(Percent	

of	Damage)

Present	Value	of	
Savings	(billion	USD)

2050s 10.7 12.6 15.2 218.1
2090s 18.9 21.7 13.0 1047.1
2050s 7.4 8.8 15.8 159.6
2090s 21.6 25.3 14.4 1344.3
2050s 16.1 19.2 16.0 347.2
2090s 39.3 59.2 33.6 7350.5

RCP	4.5

RCP	6.0

RCP	8.5

Notes: 	The	concentration	pathway	for	each	projection	is	noted	in	the	leftmost	column.	Column	1	lists	the	decade	used	to	
estimate	the	end	period	climate.	Columns	2	and	3	report	percent	damage	in	counterfactuls	with	and	without	innovation	
respectively.	Columns	4	and	5	report	the	percent	of	climate	damage	mitigated	by	directed	innovation	and	the	net	present	
value	(in	billion	USD)	of	savings	due	to	directed	technology.

Table A24: Climate Change Damage, With and Without Innovation: All Projection Estimates with
Predicted Future Areas\

(1) (2) (3) (4) (5)

Scenario End	Decade
Damage	with	
Innovation	
(Percent)

Damage	without	
Innovation	
(Percent)

Mitigated	By	
Innovation	
(Percent	of	
Damage)

Present	Value	of	
Savings	(billion	

USD)
2050s 9.8 11.6 15.5 249.4
2090s 18.2 21.0 13.1 1233.3
2050s 6.7 8.0 16.5 181.9
2090s 20.7 24.0 13.6 1462.5
2050s 15.1 17.9 15.4 385.8
2090s 49.7 56.3 11.8 3088.3

RCP	4.5

RCP	6.0

RCP	8.5

Notes: 	All	estimates	use	predicted	crop	switching	patterns	from	our	empirical	model.	The	concentration	pathway	
for	each	projection	is	noted	in	the	leftmost	column.	Column	1	lists	the	decade	used	to	estimate	the	end	period	
climate.	Columns	2	and	3	report	percent	damage	in	counterfactuls	with	and	without	innovation	respectively.	
Columns	4	and	5	report	the	percent	of	climate	damage	mitigated	by	directed	innovation	and	the	net	present	value	
(in	billion	USD)	of	savings	due	to	directed	technology.
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B Omitted Proofs and Derivations

B.1 Derivation of Expressions in Main Text

We first derive Equation 2.2 starting with the farm’s profit maximization problem:

max
𝑇𝑖

𝑝 · 𝛼−𝛼(1 − 𝛼)−1𝐺(𝐴𝑖 , 𝜃)𝛼𝑇1−𝛼
𝑖 − 𝑞𝑇𝑖 (B.1)

This is a concave problem, so its optimum is characterized by the first-order condition:

0 = 𝑝 · 𝛼−𝛼𝐺(𝐴𝑖 , 𝜃)𝛼𝑇−𝛼
𝑖 − 𝑞 (B.2)

which re-arranges to 𝑇𝑖 = 𝛼−1𝑝
1
𝛼 𝑞−

1
𝛼𝐺(𝐴𝑖 , 𝜃), as desired.

We next derive Equation 2.3. The first step is to solve for the technology firm’s optimal price.
Substituting the technology demand of Equation 2.2 into the innovating firm’s profit-maximization
problem gives the program:

max
𝑞,𝜃

(𝑞 − (1 − 𝛼)) 𝛼−1𝑝
1
𝛼 𝑞−

1
𝛼

∫
𝐺(𝐴, 𝜃)d𝐹(𝐴) − 𝐶(𝜃) (B.3)

It is straightforward to verify that this program is concave in both 𝑞 and 𝜃 under our maintained
assumptions that 𝐺 is concave in 𝜃 and 𝛼 ∈ [0, 1). The first-order condition for 𝑞, which is necessary
and sufficient for optimality, is(

𝑞−
1
𝛼 − 1

𝛼
𝑞−

1
𝛼−1(𝑞 − (1 − 𝛼))

)
𝛼−1 𝑝

1
𝛼

∫
𝐺(𝐴, 𝜃)d𝐹(𝐴) = 0 (B.4)

This is satisfied for any 𝜃 if

𝑞−
1
𝛼 − 1

𝛼
𝑞−

1
𝛼−1(𝑞 − (1 − 𝛼)) = 0 (B.5)

which in turn re-arranges to 𝑞 = 1. Plugging this back into the outer profit maximization problem
and simplifying yields the desired expression

(1 − (1 − 𝛼)) 𝛼−1𝑝
1
𝛼 1−

1
𝛼

∫
𝐺(𝐴, 𝜃)d𝐹(𝐴) − 𝐶(𝜃)

= 𝑝
1
𝛼

∫
𝐺(𝐴, 𝜃)d𝐹(𝐴) − 𝐶(𝜃)

B.2 Proof of Proposition 1

Consider a damaging shift in the climate from 𝐹 to 𝐹′, meaning that 𝐹 ⪰𝐹𝑂𝑆𝐷 𝐹′. Let (𝜃, 𝜃′) respectively
be the technology levels in each equilibrium. It is necessary and sufficient for the original equilibrium
technology level to be optimal for the innovating firm, or satisfy

𝜃 ∈ argmax 𝑝
1
𝛼

∫
𝐺(𝐴, 𝜃)d𝐹(𝐴) − 𝐶(𝜃) (B.6)
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Because 𝐺(·) is concave and twice continuously differentiable in 𝜃, 𝐶(·) is convex and differentiable
in 𝜃, d

d𝜃𝐶(0) = 0, and 𝐺2 ≥ 0 for any (𝐴, 𝜃), a necessary and sufficient condition is the first-order
condition

𝑝
1
𝛼

∫
𝐺2(𝐴, 𝜃)d𝐹(𝐴) = d

d𝜃𝐶(𝜃) (B.7)

and similarly, for the second equilibrium,

𝑝
1
𝛼

∫
𝐺2(𝐴, 𝜃′)d𝐹′(𝐴) = d

d𝜃𝐶(𝜃
′) (B.8)

If 𝐺12 ≤ 0, then 𝐴 ↦→ 𝐺2(𝐴, 𝜃) is a decreasing function. Since 𝐹 ⪰𝐹𝑂𝑆𝐷 𝐹′, we have∫
𝐺2(𝐴, 𝜃)d𝐹(𝐴) ≤

∫
𝐺2(𝐴, 𝜃)d𝐹′(𝐴) (B.9)

Now we show that 𝜃 ≤ 𝜃′. Consider the contradictory case that 𝜃 > 𝜃′. Because 𝐺(·) is concave in its
second argument, we have 𝐺2(𝐴, 𝜃) ≤ 𝐺2(𝐴, 𝜃′) for all 𝐴 and therefore∫

𝐺2(𝐴, 𝜃)d𝐹′(𝐴) ≤
∫

𝐺2(𝐴, 𝜃′)d𝐹′(𝐴) (B.10)

Combined with the previous expressions, this implies,

d
d𝜃𝐶(𝜃) =

∫
𝐺2(𝐴, 𝜃)d𝐹(𝐴) ≤

∫
𝐺2(𝐴, 𝜃)d𝐹′(𝐴) ≤

∫
𝐺2(𝐴, 𝜃′)d𝐹′(𝐴) = d

d𝜃𝐶(𝜃
′)

But the initial claim 𝜃 > 𝜃′, owing to the strict convexity of 𝐶(·), implies d
d𝜃𝐶(𝜃) >

d
d𝜃𝐶(𝜃′). This is a

contradiction. Therefore 𝜃′ ≥ 𝜃.
If 𝐺12 ≥ 0, then the previous argument is reversed. Note first that, because 𝐴 ↦→ 𝐺2(𝐴, 𝜃) is an

increasing function, ∫
𝐺2(𝐴, 𝜃′)d𝐹(𝐴) ≥

∫
𝐺2(𝐴, 𝜃′)d𝐹′(𝐴) (B.11)

using first-order stochastic dominance. Now we will verify that 𝜃′ ≤ 𝜃. Consider the contradictory
case that 𝜃′ > 𝜃. Because 𝐺(·) is concave in its second argument, we have 𝐺2(𝐴, 𝜃) ≥ 𝐺2(𝐴, 𝜃′) for all
𝐴 and ∫

𝐺2(𝐴, 𝜃)d𝐹′(𝐴) ≥
∫

𝐺2(𝐴, 𝜃′)d𝐹′(𝐴) (B.12)

Combined with the previous expressions, this implies,

d
d𝜃𝐶(𝜃) =

∫
𝐺2(𝐴, 𝜃)d𝐹(𝐴) ≥

∫
𝐺2(𝐴, 𝜃)d𝐹′(𝐴) ≥

∫
𝐺2(𝐴, 𝜃′)d𝐹′(𝐴) = d

d𝜃𝐶(𝜃
′)

But the initial claim 𝜃′ > 𝜃, owing to the strict convexity of 𝐶(·), implies d
d𝜃𝐶(𝜃′) > d

d𝜃𝐶(𝜃). This is a
contradiction. Therefore 𝜃′ ≤ 𝜃.
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B.3 Proof of Proposition 2

Consider a damaging shift in the climate from 𝐹 to 𝐹′, meaning that 𝐹 ⪰𝐹𝑂𝑆𝐷 𝐹′. Let (𝜃, 𝜃′) respectively
be the technology levels in each equilibrium and (𝑝, 𝑝′) respectively be the prices. As argued in the
proof of Proposition 1, necessary conditions for equilibrium under each climate are respectively

𝑝
1
𝛼

∫
𝐺2(𝐴, 𝜃)d𝐹(𝐴) = d

d𝜃𝐶(𝜃) (B.13)

and similarly, for the second equilibrium,

𝑝′
1
𝛼

∫
𝐺2(𝐴, 𝜃′)d𝐹′(𝐴) = d

d𝜃𝐶(𝜃
′) (B.14)

A second necessary condition in each case is that the price lies on the demand curve. Denote the price
level, as a function of the technology level and productivity distribution, as 𝑝∗(𝜃, 𝐹(·)) which solves
the following fixed-point equation for 𝑝:

𝑝 = 𝑃

(
𝛼−1(1 − 𝛼)−1𝑝

1
𝛼−1

∫
𝐺(𝐴, 𝜃)d𝐹(𝐴)

)
(B.15)

and observe that equilibrium requires 𝑝 = 𝑝∗(𝜃, 𝐹(·)) (and likewise 𝑝′ = 𝑝∗(𝜃′, 𝐹′(·))).
Let us argue first that 𝑝∗(·) is weakly decreasing in 𝜃 and 𝐹(·), the latter via the FOSD order. See

that, for any fixed (𝐹(·), 𝜃), the right-hand-side of (B.15) is a continuous, non-increasing function of 𝑝
on the range [0,∞]. The left-hand-side is a continuous function that increases without bound from 0.
Thus, the fixed point solution exists and is unique. Moreover, increasing 𝜃 (in the standard order) or
𝐹(·) (in the FOSD order) increases the term

∫
𝐺(𝐴, 𝜃)d𝐹(𝐴) under the global assumptions that 𝐺1 ≥ 0

and 𝐺2 ≥ 0, which decreases for every 𝑝 the value of the right-hand-side of (B.15). Thus the unique
solution is non-increasing in these arguments.

We next make an argument similar to that in Proposition 1 to show that 𝜃′ ≥ 𝜃, for all crops, when
the climate worsens and 𝐺12 ≤ 0. We split the argument based on conjectures for the price. Consider
first the case in which 𝑝 = 𝑝∗(𝜃, 𝐹(·)) ≥ 𝑝∗(𝜃′, 𝐹′(·)) = 𝑝′. This is only possible if 𝜃′ ≥ 𝜃 owing to
the previously demonstrated monotonicities of 𝑝∗, which proves the desired claim. Consider next
the case in which 𝑝 = 𝑝∗(𝜃, 𝐹(·)) ≤ 𝑝∗(𝜃′, 𝐹′(·)) = 𝑝′. If 𝐺12 ≤ 0, then 𝐴 ↦→ 𝐺2(𝐴, 𝜃) is a decreasing
function. Since 𝐹 ⪰𝐹𝑂𝑆𝐷 𝐹′, we have∫

𝐺2(𝐴, 𝜃)d𝐹(𝐴) ≤
∫

𝐺2(𝐴, 𝜃)d𝐹′(𝐴) (B.16)

Observe in this case that

d
d𝜃𝐶(𝜃) = 𝑝

1
𝛼

∫
𝐺2(𝐴, 𝜃)d𝐹(𝐴) ≤ 𝑝′

1
𝛼

∫
𝐺2(𝐴, 𝜃)d𝐹′(𝐴) (B.17)

by combining (B.16) with the previous claim.
We now establish 𝜃′ ≥ 𝜃 by, as in the proof of Proposition 1, ruling out the case 𝜃 > 𝜃′ by
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contradiction. If 𝜃 > 𝜃′, then

𝑝′
1
𝛼

∫
𝐺2(𝐴, 𝜃)d𝐹′(𝐴) ≤ 𝑝′

1
𝛼

∫
𝐺2(𝐴, 𝜃′)d𝐹′(𝐴) (B.18)

by weak concavity of 𝐺(·). Combining this with (B.17) implies that d
d𝜃𝐶(𝜃) ≤ d

d𝜃𝐶(𝜃′). But the
conjecture 𝜃 > 𝜃′ and the strict convexity of 𝐶(·) implies d

d𝜃𝐶(𝜃) <
d

d𝜃𝐶(𝜃′). This is a contradiction.
Therefore, 𝜃′ ≥ 𝜃 as desired.

To establish the second point, it suffices to have an example of each case. The example of technology
decreasing is given in Proposition 1, as the rigid price case is nested in the more general model. The
example of technology increasing is given here. Consider an economy in which 𝐶(𝜃) = 𝜃; 𝑃(𝑌) = 𝑌−𝜀

for all 𝑘 and some 𝜀 ≥ 0; and 𝐺(𝐴, 𝜃) = 𝐴𝜃𝛽 for some 𝛽 ∈ (0, 1). The original distribution of
productivity places a Dirac mass on productivity 𝐴, and the new distribution places a Dirac mass on
𝐴′ ≤ 𝐴. The first-order condition for equilibrium technology is

𝛽𝑝
1
𝛼𝐴𝜃𝛽−1 = 1 (B.19)

The equilibrium price is 𝑝 = 𝑀0 · (𝐴𝜃𝛽)−
𝜀

1+𝜀(1/𝛼−1) up to a positive constant 𝑀0 which depends on 𝛼 and
𝜀. The solution to the fixed point equation which identifies 𝜃 is therefore

𝜃 = 𝑀1 · 𝐴
𝛼(1−𝜀)

𝛼(1−𝛽)+𝜀(1−𝛼(1−𝛽)) (B.20)

up again to a positive constant which depends on 𝛼 and 𝜀. By the same token,𝜃′ = 𝑀1·(𝐴′)
𝛼(1−𝜀)

𝛼(1−𝛽)+𝜀(1−𝛼(1−𝛽)) .
See that 𝜃 ≥ 𝜃′ if and only if 𝜀 ∈ (0, 1). Thus, if 𝜀 > 1, we have an example economy in which 𝐺12 ≥ 0
but equilibrium technology decreases, for all crops, when the climate gets worse.

B.4 Proof of Corollary 1

We first derive the profits of each farmer. Using the expression for technology demand in Equation
2.2, we write the farmer’s profit as

Π𝑖 = 𝑝 · 𝛼−𝛼(1 − 𝛼)−1𝐺(𝐴𝑖 , 𝜃)𝛼(𝛼−1𝑝
1
𝛼 𝑞−

1
𝛼𝐺(𝐴𝑖 , 𝜃))1−𝛼 − 𝑞(𝛼−1𝑝

1
𝛼 𝑞−

1
𝛼𝐺(𝐴𝑖 , 𝜃)) (B.21)

Combining terms and simplifying, this is

Π𝑖 = (1 − (1 − 𝛼)) · 𝑝 · 𝛼−𝛼(1 − 𝛼)−1𝐺(𝐴𝑖 , 𝜃)𝛼(𝛼−1𝑝
1
𝛼 𝑞−

1
𝛼𝐺(𝐴𝑖 , 𝜃))1−𝛼

= 𝑝𝛼𝑌𝑖 = (1 − 𝛼)−1𝑞1−𝛼𝑝
1
𝛼𝐺(𝐴𝑖 , 𝜃)

(B.22)

where 𝑌𝑖 is the farm’s production in physical units.1 Moreover, the sensitivity of this to climatic
productivity is

𝜕

𝜕𝐴𝑖
Π𝑖 = 𝑀0𝑝

1
𝛼𝐺1(𝐴𝑖 , 𝜃) (B.23)

1In this context, profits are also the return to the implicit “fixed factor” in a constant-returns-to-scale re-writing of the
production function. From this logic, it is immediate that the fixed factor earns share 𝛼 of income.
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where𝑀0 = (1−𝛼)−1𝑞1−𝛼 > 0 is invariant across equilibria of the model (as 𝑞 ≡ 1 from the monopolist’s
pricing problem and 𝛼 is primitive).

We now prove the result. Let us start with case 1. By the fundamental theorem of calculus, with
differentiable 𝐺,

Δ𝑅(𝐴, 𝑝) = 𝑀0𝑝
1
𝛼 · (𝐺1(𝐴, 𝜃) − 𝐺1(𝐴, 𝜃′))

= −𝑀0𝑝
1
𝛼

∫ 𝜃′

𝜃
𝐺12(𝐴, 𝑧)d𝑧

(B.24)

By the assumption 𝐺12 ≤ 0 and the result from Proposition 2 that 𝜃′ ≥ 𝜃, we know the integrand
is non-positive along the entire path. Moreover, the constant −𝑀0𝑝

1
𝛼 is strictly negative. Thus

Δ𝑅(𝐴, 𝑝) ≥ 0 for any (𝐴, 𝑝).
Consider next case 2. Proposition 2 tells us that we could have either 𝜃′ ≥ 𝜃 or the opposite. If

𝜃′ ≥ 𝜃, Δ𝑅(𝐴, 𝑝) ≤ 0 by following the argument above and noting that 𝐺12 ≥ 0. If 𝜃′ ≤ 𝜃, then we
revise the first argument to integrate from the lower to the higher technology level

Δ𝑅𝑖 = 𝑀0𝑝
1
𝛼

∫ 𝜃

𝜃′
𝐺12(𝐴, 𝑧)d𝑧 (B.25)

and observe that non-negativity of the constant and 𝐺12 implies Δ𝑅(𝐴, 𝑝) ≥ 0.

B.5 Proof of Proposition 3

We begin with the first-order condition of the innovator for crop 𝑘. See that the partial derivative of
𝐺(·) in 𝜃, evaluated at (𝐴𝑖 , 𝜃𝑘), is

𝜕

𝜕𝜃
𝐺(𝐴𝑖 , 𝜃𝑘) =

𝐺(𝐴𝑖 , 𝜃𝑘)
𝜃𝑘

(𝑔20 + 𝑔21(𝐴 − 𝐴𝑖)) (B.26)

We approximate this around the point at which 𝐴𝑖 = �̃� ∈ [𝐴, 𝐴], 𝜃𝑘 = �̃�, and 𝐺(𝐴𝑖 , 𝜃) = �̃� := 𝐺(�̃�, �̃�)
for each crop. Since the scale of �̃� and �̃� is arbitrary, we make the convenient normalizations that
𝑔20 + 𝑔21(𝐴 − �̃�) = 1 and 𝑔0 + 𝑔1(𝐴 − �̃�) = 0 (i.e., 𝐺(�̃�, 𝜃) = 𝜃).

The first-order condition for the innovator’s choice of 𝜃𝑘 is, applying the approximation to set
𝐺(𝐴𝑖 ,𝜃𝑘 )

𝜃𝑘
≈ 𝜃𝑘

𝜃𝑘
= 1, is

𝜃
𝜂
𝑘
== 𝑝

1
𝛼

𝑘

∫ 1

0

𝐺(𝐴𝑖 , 𝜃𝑘)
𝜃𝑘

(
𝑔20 + 𝑔21(𝐴 − 𝐴𝑖)

)
d𝐹(𝐴𝑖) ≈ 𝑝

1
𝛼

𝑘

∫ 1

0

(
𝑔20 + 𝑔21(𝐴 − 𝐴𝑖)

)
d𝐹(𝐴𝑖) (B.27)

We approximate the log of the integral as

log
∫ 1

0

(
𝑔20 + 𝑔21(𝐴 − 𝐴𝑖)

)
d𝐹(𝐴𝑖) =

∫ 1

0

((
𝑔20 + 𝑔21(𝐴 − 𝐴𝑖)

)
− 1

)
d𝐹(𝐴𝑖) (B.28)

since the integrand is close to one. Applying this approximation to the first-order condition, and
taking logs, we get

𝜂 log𝜃𝑘 = (𝑔20 − 1) + 1
𝛼

log 𝑝𝑘 + 𝑔21(𝐴 − 𝐴𝑘) (B.29)
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in which we define the crop-level shock

𝐴𝑘 :=
∫ 1

0
𝐴d𝐹𝑘(𝐴) (B.30)

We now solve for equilibrium prices. Prices, in logs, lie on the following demand curve:

log 𝑝𝑘 = log 𝑝0 − 𝜀 log𝑌𝑘 (B.31)

The output of a farm 𝑖 growing crop 𝑘, based on substituting the technology demand of Equation 2.2
into the production function, is

𝑌𝑖(𝐴𝑖 , 𝜃𝑘 , 𝑝𝑘) = (𝛼(1 − 𝛼))−1𝑝
1
𝛼−1
𝑘

𝐺(𝐴𝑖 , 𝜃𝑘) (B.32)

and the expression for total output of crop 𝑘 is

𝑌𝑘 =

∫
𝑌𝑖(𝐴𝑖 , 𝜃𝑘 , 𝑝𝑘)d𝐹(𝐴𝑖) = (𝛼(1 − 𝛼))−1𝑝

1
𝛼−1
𝑘

∫ 1

0
𝐺(𝐴, 𝜃𝑘)d𝐹𝑘(𝐴) (B.33)

Taking a log and substituting this into Equation B.31 gives

log 𝑝𝑘 = log 𝑝0 − 𝜀

(
1
𝛼
− 1

)
log 𝑝𝑘 + 𝜀 log(𝛼(1 − 𝛼)) − 𝜀 log

∫ 1

0
𝐺(𝐴, 𝜃𝑘)d𝐹𝑘(𝐴) (B.34)

We again apply an approximation around �̃�. Specifically, we do the log-linearization

log
∫ 1

0

𝐺(𝐴, 𝜃𝑘)
�̃�

d𝐹𝑘(𝐴) ≈
∫ 1

0
log

(
𝐺(𝐴, 𝜃𝑘)

�̃�

)
d𝐹𝑘(𝐴) (B.35)

Using the approximation, and the fact that log �̃� = log �̃� under the normalization, we write

log 𝑝𝑘 = log 𝑝0 − 𝜀

(
1
𝛼
− 1

)
log 𝑝𝑘 + 𝜀 log(𝛼(1 − 𝛼)) − 𝜀𝑔0 − 𝜀𝑔1(𝐴 − 𝐴𝑘)

− 𝜀
(
(𝑔20 + 𝑔21(𝐴 − 𝐴𝑘)) log𝜃𝑘

)
+ 𝜀 log �̃�

(B.36)

We finally approximate the second order term in the price equation around the point at which 𝐴𝑖 ≡ �̃�:

(𝐴 − 𝐴𝑖) log𝜃 ≈ (𝐴 − �̃�) log𝜃 (B.37)

This is required to obtain a closed-form solution for prices. We then write, using this substitution and
the aforementioned normalization that 𝑔20 + 𝑔21(𝐴 − �̃�) = 1,

log 𝑝𝑘 = (log 𝑝0 + 𝜀 log �̃�) + 𝜀

(
log(𝛼(1 − 𝛼)) − 𝑔0 − 𝑔1(�̃� − 𝐴𝑘) −

(
1
𝛼
− 1

)
log 𝑝𝑘 − log𝜃𝑘

)
(B.38)
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Solving for 𝑝𝑘 , we get

log 𝑝𝑘 =
𝛼

𝛼 + 𝜀(1 − 𝛼)
(
log 𝑝0 + 𝜀 log �̃� + 𝜀 log(𝛼(1 − 𝛼)) − 𝜀

(
𝑔0 + 𝑔1(𝐴 − 𝐴𝑘) + log𝜃𝑘

))
(B.39)

We now solve for the equilibrium level of technology by combining (B.29) and (B.39). Direct
substitution gives

𝜂 log𝜃𝑘 =
log 𝑝0 + 𝜀 log �̃� + 𝜀 log(𝛼(1 − 𝛼)) − 𝜀

(
𝑔0 + 𝑔1(𝐴 − 𝐴𝑘) + log𝜃𝑘

)
𝛼 + 𝜀(1 − 𝛼) + (𝑔20 − 1) + 𝑔21(𝐴 − 𝐴𝑘)

(B.40)
We first solve the above for 𝐴𝑘 = �̃� to derive the constant

log �̃� =
𝜏
𝜂

(
1
𝜀

log 𝑝0 + log(𝛼(1 − 𝛼))
)

(B.41)

where we define the parameter
𝜏 =

𝜀

𝛼 + 𝜀(1 − 𝛼) (B.42)

We then observe that we can write

log𝜃𝑘 = log𝜃0 + 𝛿(𝐴 − 𝐴𝑘) (B.43)

where log𝜃0 = log �̃� − 𝛿(𝐴 − �̃�) and slope

𝛿 :=
𝑔21 − 𝜏𝑔1

1 + 𝜂 + 𝜏
(B.44)

We finally consider equilibrium rents. Log rents for farm 𝑖, growing crop 𝑘, are

logΠ𝑖 = − log(1 − 𝛼) + 1
𝛼

log 𝑝𝑘 + log𝐺(𝐴𝑖 , 𝜃𝑘) (B.45)

Using the assumed form of log𝐺 from (2.5), 𝑝 from (B.39), and 𝜃 from (B.43),

logΠ𝑖 = − log(1 − 𝛼)

+ 𝜏

(
1
𝜀

log 𝑝0 + log �̃� + log(𝛼(1 − 𝛼)) −
(
𝑔0 + 𝑔1(𝐴 − 𝐴𝑘) + (log𝜃0 + 𝛿(𝐴 − 𝐴𝑘))

))
+ 𝑔0 + 𝑔1(𝐴 − 𝐴𝑖) + (𝑔20 + 𝑔21(𝐴 − 𝐴𝑖))(log𝜃0 + 𝛿(𝐴 − 𝐴𝑘))

(B.46)

which simplifies, as desired, to

logΠ𝑖 = logΠ0,𝑖 + 𝛽 · (𝐴 − 𝐴𝑖) + 𝛾 · (𝐴 − 𝐴𝑘(𝑖)) + 𝜙(𝐴 − 𝐴𝑖)(𝐴 − 𝐴𝑘(𝑖)) (B.47)
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with coefficients
𝛽 = 𝑔1

𝛾 = −𝜏(𝑔1 + 𝛿)
𝜙 = 𝑔21𝛿

(B.48)

and constant

logΠ0,𝑖 = − log(1 − 𝛼) + 𝜏

(
1
𝜀

log 𝑝0 + log �̃� + log(𝛼(1 − 𝛼)) − 𝑔0 − log𝜃0

)
+ 𝑔0 + 𝑔20 log𝜃0 (B.49)

B.6 Proof of Corollary 2

The stated assumptions translate to 𝑔20 = 0 and 𝜀 = 0. The latter implies 𝜏 = 0. See, under these
conditions, that the regression coefficients in representation (B.48), from the derivation in Appendix
B.5, are 𝛽 = 𝑔1, 𝛾 = 0, and 𝜙 = 𝑔21𝛿.

Let us now consider the counterfactual scenarios. Denote by regular notation quantities under the
intial climate, by primes quantities under the later climate, and by double primes quantities under
the counterfactual scenario. Given the mapping

logΠ𝑖 = log AgrLandPrice𝑖
𝐴𝑖 = LocalEE𝑖

𝐴𝑘(𝑖) = InnovationExposure𝑖

we want to show that logΠ′′
𝑖

corresponds with each of the expressions in Equations 6.1 and 6.2 under
the assumed conditions.

In the counterfactual without climate change, the climate is instead 𝐴′′
𝑖
= 𝐴𝑖 and 𝐴′′

𝑘
= 𝐴𝑘 in the

second period. See that

logΠ′′
𝑖 = logΠ0,𝑖 + 𝛽 · (𝐴 − 𝐴′′

𝑖 ) + 𝛾 · (𝐴 − 𝐴′′
𝑘(𝑖)) + 𝜙(𝐴 − 𝐴′′

𝑖 )(𝐴 − 𝐴′′
𝑘(𝑖))

= logΠ0,𝑖 + 𝛽 · (𝐴 − 𝐴𝑖) + 𝛾 · (𝐴 − 𝐴𝑘(𝑖)) + 𝜙(𝐴 − 𝐴𝑖)(𝐴 − 𝐴𝑘(𝑖))
= logΠ𝑖

or that the two scenarios are identical. This validates the counterfactual.
In the counterfactual without innovation, technology is held counterfactually at 𝜃′′

𝑘
= 𝜃𝑘 while the

climate satisfies 𝐴′′
𝑖 ,𝑘

= 𝐴′
𝑖 ,𝑘

and 𝐴′′
𝑘
= 𝐴′

𝑘
for all locations and crops. Using (B.46) from the derivation

in Appendix B.5, and substituting in 𝜀 = 0 (which implies 𝜏 = 0) and 𝑔20 = 0, we have

logΠ′′
𝑖 = − log(1 − 𝛼) + 𝑔0 + 𝑔1(𝐴 − 𝐴′

𝑖) + (𝑔20 + 𝑔21(𝐴 − 𝐴′
𝑖))(𝜃0 + 𝛿(𝐴 − 𝐴𝑘(𝑖))) (B.50)

See that this corresponds with

logΠ′′
𝑖 = logΠ0,𝑖 + 𝛽 · (𝐴 − 𝐴′

𝑖) + 𝛾 · (𝐴 − 𝐴𝑘(𝑖)) + 𝜙 · (𝐴 − 𝐴′
𝑖)(𝐴 − 𝐴𝑘(𝑖)) (B.51)
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given the expressions for the coefficients in Equation B.48 and, in particular, the fact that 𝜀 = 0 and
𝜏 = 0 implies that 𝛾 = 0.
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C Model Extensions

C.1 Efficiency

In this section, we explore the efficiency properties of the model. For simplicity, we focus on the
fixed-price variant of the model.

C.1.1 Static Baseline

We begin with the main static model introduced in the text. We first fully specify the consumer block
of the model. In addition to the agricultural good (the “crop”), there is a second numeraire good
which can be interpreted as leisure (i.e., negative labor).2 The agent has an endowment 𝑧 of this good
and consumes at level 𝑧. The consumer’s problem is

max
𝑐,𝑧

𝑝𝑐 + 𝑧

s.t. 𝑧 + 𝑝𝑐 ≤ 𝑊 + 𝑧
(C.1)

where 𝑝 > 0 is a constant, 𝑐 is consumption of the crop, and𝑊 is the agent’s total income from owning
the farms and the innovative firm. See, from the first-order conditions for consumer optimization,
that demand is completely elastic at 𝑝 = 𝑝.

The social planner’s objective is to maximize the representative household’s income subject to
feasibility constraints. It is straightforward to show that the social planner’s problem can be written
as

max
𝑌,𝑇(·),𝜃

𝑝𝑌 + 𝑧 − 𝐶(𝜃) − (1 − 𝛼)
∫ 1

0
𝑇(𝐴)d𝐹(𝐴)

s.t. 𝑌 ≤ 𝛼−𝛼(1 − 𝛼)−1
∫ 1

0
𝑇(𝐴)1−𝛼𝐺(𝐴, 𝜃)𝛼 d𝐹(𝐴)

(C.2)

after substituting in feasibility constraints. Let 𝜆 be the Langrange multiplier on the production
constraint, and note immediately that 𝜆 = 𝑝 in the solution (if the constraint binds at equality). The
remaining first order conditions are

d
d𝜃𝐶(𝜃) = 𝑝𝛼1−𝛼(1 − 𝛼)−1

∫ 1

0
𝑇(𝐴)1−𝛼𝐺(𝐴, 𝜃)𝛼−1𝐺2(𝐴, 𝜃)d𝐹(𝐴) (C.3)

for 𝜃; and
(1 − 𝛼) = 𝑝𝛼−𝛼𝑇(𝐴)−𝛼𝐺(𝐴, 𝜃)𝛼 (C.4)

for each 𝑇(𝐴). See that (C.4) coincides with decentralized technology demand (2.2) and (C.3) cor-
responds with decentralized quality choice (2.3) if 𝑞 = 1 − 𝛼, or technology is priced at marginal
cost. Thus the singular source of inefficiency in the decentralized allocation is the monopoly power
of the technology producer, which could be fixed by leveraging an appropriate subsidy of rate 𝛼 (i.e.,
having consumers face price (1 − 𝛼)𝑞). Moreover, the effect of the monopoly power is to unambigu-

2For the simplifying reason of ignoring non-negativity constraints, we allow for negative consumption of this good.
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ously reduce the amount of technology used by each firm (𝑇(𝐴) for all 𝐴 ∈ [𝐴, 𝐴]) and the level of
technology 𝜃. This is clear from the combination of (C.3) and (C.4) which gives the socially optimal
level of technology:

d
d𝜃𝐶(𝜃) = (1 − 𝛼)− 1

𝛼 𝑝
1
𝛼

∫
𝐺2(𝐴, 𝜃)d𝐹(𝐴) (C.5)

which differs from the equilibrium condition (B.7), in the proof of Proposition 1 in Appendix B.2,
by the scaling (1 − 𝛼)− 1

𝛼 > 1 on the marginal benefit. Under the established assumptions that 𝐺 is
concave in 𝜃 and 𝐶 is convex in 𝜃, it is immediate that the socially optimal level of technology exceeds
the equilibrium level.

Note finally that, since correcting the externality affects technology demand only up to a scaling
factor, the comparative static in Proposition 1 continues to hold as a comparative static for the planner’s
preferred allocation. This can be verified by going through the steps of the proof in Proposition
B.2 under a different definition for 𝑝, which is also a scaling factor. Therefore, the “direction” of
technological change is not different in the planner’s solution and the equilibrium allocation.

C.1.2 With Dynamic Externalities

We now discuss a model extensions that stylizes a second possible source of under-investment in
technology: the dynamic returns to scale in idea production, which are emphasized in classic models
of endogenous technological change (e.g., Romer, 1990), and in this setting reflect the extent to which
agricultural research can build on past discoveries.

Consider an extension of the model with two periods populated with distinct “generations”
of consumers, farmers, and technology producers. We will use primes to distinguish quantities
and prices in the second period. The only primitive difference is that, at period 𝑡 = 1, the cost
of producing technological quality (or “conducting research”) is lower when quality was higher in
the last period. We model this by having the cost given by 𝑓 (𝜃)𝐶(𝜃′), where 𝑓 (·) : R+ → R+ is a
decreasing, differentiable, and convex function; 1 − 𝑓 (𝜃) are the “percentage cost savings” associated
with a given level 𝜃 of research in the first period.3

Using the same arguments in the main text, see that the decentralized equilibrium in the first
period is characterized by the following first-order condition for technology quality

d
d𝜃𝐶(𝜃) = 𝑝

1
𝛼

∫
𝐺2(𝐴, 𝜃)d𝐹(𝐴) (C.6)

while the equilibrium in the second period is characterized by

𝑓 (𝜃) d
d𝜃𝐶(𝜃

′) = 𝑝
1
𝛼

∫
𝐺2(𝐴, 𝜃′)d𝐹′(𝐴) (C.7)

Consider now the problem of a social planner who maximizes total utility of agents across periods
with discount factor 𝛽.4 It is straightforward to show, extending the results above, that optimal

3In this formulation, the “savings” could be positive or negative.
4This implies Pareto weights 1 and 𝛽, respectively, on each generation.
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investment at 𝑡 = 0 and 𝑡 = 1 satisfy the following system of equations:

d
d𝜃𝐶(𝜃) − 𝛽

(
d

d𝜃 𝑓 (𝜃)
)
𝐶(𝜃′) = (1 − 𝛼) 1

𝛼 𝑝
1
𝛼

∫
𝐺2(𝐴, 𝜃)d𝐹(𝐴)

𝑓 (𝜃) d
d𝜃𝐶(𝜃

′) = (1 − 𝛼) 1
𝛼 𝑝

1
𝛼

∫
𝐺2(𝐴, 𝜃′)d𝐹′(𝐴)

(C.8)

See that the social planner now wants both to cancel the monopoly markup and to make the first
period producers internalize the value of their technological progress on lowering research costs at
𝑡 = 1. A sufficient instrument is a subsidy on research effort at 𝑡 = 0 proportional to

𝛽 · d
d𝜃 𝑓 (𝜃) ·

𝐶(𝜃′)
𝐶(𝜃)

evaluated at the social planner’s optimum allocation. This naturally increases in the technological
requirements of the second period and decreases in the technology produced in the first period.

Observe that, in contrast to the previous section’s analysis with only the monopoly distortion,
the planner’s problem and the (autarkic) equilibrium allocation differ by more than a scaling factor.
Therefore, the “direction of technological change” or sign of 𝜃′−𝜃 may generally differ in the planner’s
solution and the equilibrium solution under different scenarios for the input distributions 𝐹 and 𝐹′.
The intuition is that the social planner may want to boost research in the first period for the sake of
exploiting the dynamic externality—that is, the planner may want the economy so well prepared for
eventual climate damage ex ante, that a large redirection of technology is not necessary ex post.

C.2 Multiple Types of Technology

We now explore a variant model in which whether technology is climate substituting or complement-
ing is an endogenous outcome of the directed innovation process. This recovers the intuition that
climatic change can also push technology toward a climate-mitigating focus even within a specific
studied crop.

C.2.1 Equilibrium and Comparative Statics

The farm continues to consume a scalar technological good in quantity 𝑇𝑖 , but this good has two
different “qualities” 𝜃 and 𝜏. The production function is

𝑌𝑖 = 𝛼−𝛼(1 − 𝛼)−1𝐺(𝐴𝑖 , 𝜃, 𝜏)𝛼𝑇1−𝛼
𝑖

in which we assume

1. Higher 𝐴𝑖 corresponds to good climate, or 𝐺1 ≥ 0;

2. Both technological qualities improve output, or 𝐺2 ≥ 0 and 𝐺3 ≥ 0;

3. The technology embodied by 𝜃 is climate substituting while the technology embodied by 𝜏 is
climate complementing, or 𝐺12 ≤ 0 and 𝐺13 ≥ 0;
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4. The two technologies are substitutes for one another, or 𝐺23 ≤ 0.

5. Each technology has a decreasing return, or 𝐺22 ≤ 0 and 𝐺33 ≤ 0.

An innovative firm produces the technological input at marginal cost 1−𝛼; sets the price of this input;
and chooses research in each area, or (𝜃, 𝜏), subject to an additive cost 𝐶(𝜃) + 𝐾(𝜏), where 𝐶(·) and
𝐾(·) are differentiable and convex.

Let us focus on the fixed-price economy. Essentially identical logic to that underpinning Propo-
sition 1 shows that the first-order conditions determining the quality of each technology are the
following:

d
d𝜃𝐶(𝜃) = 𝑝

1
𝛼

∫
𝐺2(𝐴, 𝜃, 𝜏)d𝐹(𝐴)

d
d𝜃𝐾(𝜏) = 𝑝

1
𝛼

∫
𝐺3(𝐴, 𝜃, 𝜏)d𝐹(𝐴)

(C.9)

Consider now a damaging shift in the climate, as in Proposition 1, to a new productivity distribu-
tion 𝐹(𝐴). This induces a weak increase in the climate-substituting technology 𝜃 and a weak decrease
in the climate-mitigating technology 𝜏. Informally, this shift has increased the demand for climate-
substituting technologies while decreasing the demand for climate-complementing technologies, and
the substitutability of two inputs intensifies this force. This shows how our model can accomodate
directed technological change within specific crops. The remainder of this subsection gives the more
detailed proof of the claim.

Formally, we show the claim by contradiction. Consider first the possibility in which 𝜏 strictly
increases and 𝜃 weakly increases. If the strictly increasing technology is 𝜏, then under this conjecture
d
d𝜏𝐾(𝜏′) >

d
d𝜏𝐾(𝜏). But

d
d𝜏𝐾(𝜏) =

∫
𝐺3(𝐴, 𝜃, 𝜏)d𝐹(𝐴) ≥

∫
𝐺3(𝐴, 𝜃, 𝜏)d𝐹′(𝐴)

because 𝐺13 ≥ 0 and 𝐹 ⪰𝐹𝑂𝑆𝐷 𝐹′; and∫
𝐺3(𝐴, 𝜃, 𝜏)d𝐹′(𝐴) ≥

∫
𝐺3(𝐴, 𝜃′, 𝜏)d𝐹′(𝐴) ≥

∫
𝐺3(𝐴, 𝜃′, 𝜏′)d𝐹′(𝐴) = d

d𝜏𝐾(𝜏
′)

by 𝐺23 ≤ 0 (inputs are substitutes) and concavity of 𝐺(·). This implies d
d𝜏𝐾(𝜏) ≥ d

d𝜏𝐾(𝜏′) which
contradicts the assumption.

Identical and reverse logic rules out the case that 𝜃 strictly decreases and 𝜏 weakly decreases,
finding the contradiction in the first-order condition for 𝜃.

We finally rule out the possibility that 𝜃 strictly decreases and 𝜏 weakly increases. By increasing
differences of (−𝜃, 𝜏) in 𝐴, implied by our assumptions 𝐺12 ≤ 0 and 𝐺13 ≥ 0, the positive demand
shift from (𝜃, 𝜏) to (𝜃′, 𝜏′) must be larger in the less damaging climate or

𝐺(𝐴′, 𝜃′, 𝜏′) − 𝐺(𝐴′, 𝜃, 𝜏) ≤ 𝐺(𝐴, 𝜃′, 𝜏′) − 𝐺(𝐴, 𝜃, 𝜏)

for any 𝐴′ ≥ 𝐴. The optimality of (𝜃′, 𝜏′) in the new climate implies that this choice generates more
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profit that (𝜃, 𝜏), or

𝑝
1
𝛼

∫
𝐺(𝐴, 𝜃′, 𝜏′)d𝐹′(𝐴) − 𝐶(𝜃′) − 𝐾(𝜏′) ≥ 𝑝

1
𝛼

∫
𝐺(𝐴, 𝜃, 𝜏)d𝐹′(𝐴) − 𝐶(𝜃) − 𝐾(𝜏)

while increasing differences and 𝐹′ ⪰𝐹𝑂𝑆𝐷 𝐹 implies that (𝜃′, 𝜏′) would have been strictly better
improvement over (𝜏, 𝜃) under the old climate, or

𝑝
1
𝛼

∫
𝐺(𝐴, 𝜃′, 𝜏′)d𝐹(𝐴)−𝑝

1
𝛼

∫
𝐺(𝐴, 𝜃, 𝜏)d𝐹(𝐴) > 𝑝

1
𝛼

∫
𝐺(𝐴, 𝜃′, 𝜏′)d𝐹′(𝐴)−𝑝

1
𝛼

∫
𝐺(𝐴, 𝜃, 𝜏)d𝐹′(𝐴)

Together, however, these statements imply

𝑝
1
𝛼

∫
𝐺(𝐴, 𝜃′, 𝜏′)d𝐹(𝐴) − 𝐶(𝜃′) − 𝐾(𝜏′) > 𝑝

1
𝛼

∫
𝐺(𝐴, 𝜃, 𝜏)d𝐹(𝐴) − 𝐶(𝜃) − 𝐾(𝜏)

which contradicts the optimality of (𝜃, 𝜏) under the old climate. Therefore this case is impossible.
The only remaining case has 𝜃 weakly increase and 𝜏 weakly decrease as desired.

C.2.2 Dynamic Externalities and Lock-In

We conclude with a brief discussion of how the previous model of endogenous climate complementarity
of technology interacts with the issue of dynamic externalities raised in C.1.2. Consider a variant of
the two-technology model with two periods and myopic agents, as earlier. The cost of investing in 𝜃

in the second period is 𝑓 (𝜃)𝐶(𝜃′), where 𝑓 (·) : R+ → R+ is a decreasing, differentiable, and convex
function as before; and the cost of investing in 𝜏 in the second period is 𝑓 (𝜏)𝐶(𝜏′). It is immediate that
the social planner contemplates separate subsidies for the development of each type of technology to
allow innovators in the first period to internalize the dynamic externality.

Now map this exercise to a world in which the climate worsens in the second period relative to the
first. An immediate implication is that the equilibrium allocation may relatively over-invest in climate-
complementing technologies in the first period due to not internalizing the value of “preparedness”
for climate change in the second period, or having lower costs for climate-substituting technologies
which are relatively more useful in the second period.

C.3 Variable Utilization

In this section, we introduce a tractable variant of the model which illustrates variable utilization or
a form of switching from a given crop to an outside option. Let 𝑍𝑖 ∈ [0, 1] be a utilization level of a
given tract of land. In the model with utilization, the farm’s production function is now given by
𝑌𝑖 ,𝑘 = 𝑍1−𝛼

𝑖
𝛼−𝛼(1 − 𝛼)−1𝐺(𝐴𝑖 , 𝜃𝑘)𝛼𝑇1−𝛼

𝑖 ,𝑘
. Utilization 𝑍𝑖 entails an additive cost 𝜙(𝑍𝑖), where 𝜙(·) is

convex and twice differentiable, and satisfies 𝜙′(0) = 0 and 𝜙′(1) = ∞ to ensure an interior solution for
utilization. This is a reduced form for transforming land from non-agricultural use or from planting
other crops. It is straightforward to show that the farm’s demand for technology now includes an
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endogenous utilization term (substituting in the immediately verifiable assumption that 𝑞𝑘 = 1):

𝑇𝑖 ,𝑘 = 𝛼−1𝑝
1
𝛼

𝑘
𝑍∗(𝐴𝑖 , 𝜃𝑘 , 𝑝𝑘)𝐺(𝐴𝑖 , 𝜃𝑘) (C.10)

where optimal utilization solves

𝑍∗(𝐴𝑖 , 𝜃𝑘 , 𝑝𝑘) ∈ argmax
𝑍𝑖≥0

𝑍𝑖 · 𝛼−1(1 − 𝛼)−1𝑝
1
𝛼

𝑘
𝐺(𝐴𝑖 , 𝜃𝑘) − 𝜙(𝑍𝑖) (C.11)

Let us now revisit the environment of Proposition 1, with fixed prices. It is immediate that the
results of Proposition 1 go through as long as the relevant cross-partial properties are satisfied by
the function (𝐴𝑖 , 𝜃𝑘) ↦→ 𝑍∗(𝐴𝑖 , 𝜃𝑘 , 𝑝𝑘)𝐺(𝐴𝑖 , 𝜃𝑘), or climate and technology are appropriately “comple-
ments” or “substitutes” after endogenous utilization is taken into account. We can be more specific
about what this means by calculating this directly.

Let �̃�(𝐴𝑖 , 𝜃𝑘) := 𝑍∗(𝐴𝑖 , 𝜃𝑘 , 𝑝𝑘 𝑘)𝐺(𝐴𝑖 , 𝜃𝑘) be the aforementioned product (supressing dependence
on 𝑝𝑘), let𝜓(·)denote the (by assumption, well-defined) inverse of 𝜙′(·), and normalize for convenience

𝛼−1(1 − 𝛼)−1𝑝
1
𝛼

𝑘
= 1. See that optimal utilization is given by

𝑍∗ = 𝜓(𝐺(𝐴𝑖 , 𝜃𝑘)) (C.12)

which is, by assumption, an increasing function. Depending on the shape of 𝜓(·), or more primitively
the shape of 𝜙′(·), this function can be concave, convex, or neither.

The cross-partial derivative of �̃� is the following

𝜕2

𝜕𝐴𝑖𝜕𝜃𝑘
�̃�(𝐴𝑖 , 𝜃𝑘) = 𝐺12 (𝑍∗ + 𝜓′(𝐺)) + (2𝜓′(𝐺) + 𝜓′′(𝐺))𝐺1𝐺2 (C.13)

The first term is the familiar term which reflects the “raw” complementarity in 𝐺(·) and the indirect
effect via 𝑍∗. The second, under the going assumptions that (𝐺1 , 𝐺2) ≥ 0, inherits its sign from the
sign of 2𝜓′ − 𝜓′′.

Consider first the case in which 𝜓 is not too concave or 2𝜓′ > −𝜓′′. Then, endogenous utilization
can result in 𝜕2

𝜕𝐴𝑖𝜕𝜃𝑘
�̃�(𝐴𝑖 , 𝜃𝑘) ≥ 0 even when 𝐺12 ≤ 0. In this sense, endogenous utilization “fights

against case 1 and fights for case 2,” referring to the cases of Proposition 1. This embodies the
economic intuition that farmers respond to bad climate shocks by planting less. Even if conditional
on “digging in their heels” and planting they demand more technology, lower planting can be the
dominant effect when utilization is very sensitive to productivity (high 𝜓′).

If 𝜓 is very concave, or 2𝜓′ < −𝜓′′, then the sign of the cross partial will be negative as long as
𝐺12 ≤ 0. This is a slightly perverse case in which negative shocks increase the marginal product of
technology because they make the utilization decision more sensitive to productivity. Concretely,
when the climate is good the farm does not adjust much; when the climate is poor, farms adjust more
on all margins, so new technology has an outsized effect on decisions. In this sense, the basic idea
that land adjustments dampen the force of case 1 in Proposition 1 is not a fully robust one.
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C.4 Capacity Constraints for Research

In our baseline model, the allocation of research effort had no capacity constraints or restrictions across
sectors. The right economic thought experiment was that the innovators were optimally trading off
research in each crop with an unmodeled outside option, like research in other areas of chemistry
or biotechnology. We now relax this assumption in a particularly tractable way to illustrate the dual
process of re-allocation both into agricultural bio-technology and between sectors of this field.

C.4.1 Model

As in Section 2.5, we extend the model to include multiple crops. There are 𝐾 crops indexed by
𝑘 ∈ {1, . . . , 𝐾}. For each crop, there is a unit measure of locations which produce the crop. We use
(𝑝𝑘)𝐾𝑘=1 to denote each crop’s price in terms of the numeraire; (𝐹𝑘)𝐾𝑘=1 to denote each crop’s productivity
distribution; and (𝜃𝑘)𝐾𝑘=1 to denote each crop’s technology level. The production function for each
crop is given by (2.1).

A single representative innovator chooses the price and quality of each technological input. The
innovator faces a constraint that their total dollar investment in quality improvement does not exceed
some level 𝐶, or

∑𝐾
𝑘=1 𝐶(𝜃𝑘) ≤ 𝐶. We can think of 𝐶 as the overall size of the innovator’s “laboratory.”

The innovator can then expand the size of their laboratory at some cost given by 𝜓(𝐶), where
𝜓(·) : R+ → R+ is a differentiable, convex function. The profit maximization problem is therefore:

max
(𝑞𝑘 ,𝜃𝑘 )𝐾𝑘=1 ,𝐶

(𝑞𝑘 − (1 − 𝛼)) 𝛼−1
𝐾∑
𝑘=1

𝑝
1
𝛼

𝑘
𝑞
− 1

𝛼

𝑘

∫
𝐺(𝐴, 𝜃𝑘)d𝐹𝑘(𝐴) − 𝜓(𝐶)

s.t.
𝐾∑
𝑘=1

𝐶(𝜃𝑘) ≤ 𝐶

(C.14)

It is straightforward to show, as in the baseline model (see Appendix B.1), that the profit-maximzing
price is 𝑞𝑘 ≡ 1 for all crops and therefore the problem reduces to

max
(𝜃𝑘 )𝐾𝑘=1 ,𝐶

𝐾∑
𝑘=1

𝑝
1
𝛼

𝑘

∫
𝐺(𝐴, 𝜃𝑘)d𝐹𝑘(𝐴) − 𝜓(𝐶)

s.t.
𝐾∑
𝑘=1

𝐶(𝜃𝑘) ≤ 𝐶

(C.15)

Let 𝜆 denote the Lagrange multiplier on the capacity constraint and

𝐷(𝑝𝑘 , 𝜃𝑘 , 𝐹𝑘) := 𝑝
1
𝛼

𝑘

∫
𝐺(𝐴, 𝜃𝑘)d𝐹𝑘(𝐴)

denote crop-specific technology demand in a more compact notation. The first-order condition for
each choice 𝜃𝑘 is

𝜆𝐶′(𝜃𝑘) = 𝐷(𝑝𝑘 , 𝜃𝑘 , 𝐹𝑘) (C.16)
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Note that, given the concavity of 𝐺(·), 𝐷𝑘(·) is a decreasing function of 𝜃𝑘 holding fixed all other
inputs. The first-order condition for the constraint, assuming that it binds at equality, is

𝜆 = 𝜓′(𝐶) (C.17)

Therefore, the vector of 𝜃𝑘 solves the following system of equations:(
𝜓′

(
𝐾∑
𝑘=1

𝐶(𝜃𝑘)
))
𝐶′(𝜃𝑘) = 𝐷(𝑝𝑘 , 𝜃𝑘 , 𝐹𝑘), ∀𝑘 (C.18)

See that increasing research in sector 𝑘′ increases the effective marginal cost of research in sector 𝑘,
and thus lowers research in sector 𝑘. This captures a “soft” capacity constraint.

C.4.2 Tractable Variant

To make more progress, let us specialize to a particularly tractable version of this model. Let 𝐶(𝑥) =
𝑥1+𝜂/(1 + 𝜂) for some 𝜂 > 0 and 𝜓(𝑥) = (𝜒𝑥)1+𝜁/(1 + 𝜁) for some 𝜒 ≥ 0 and 𝜁 > 0. Finally, assume
that 𝐷(𝑝𝑘 , 𝜃𝑘 , 𝐹𝑘) ≡ 𝐷(𝑝𝑘 , 𝐹𝑘), so we can solve for 𝜃𝑘 explicitly. The previous system of equations
simplifies to

𝜒1+𝜁

(
𝐾∑
𝑘=1

𝜃
1+𝜂
𝑘

1 + 𝜂

)𝜁
𝜃
𝜂
𝑘
= 𝐷(𝑝𝑘 , 𝐹𝑘), ∀𝑘 (C.19)

Conjecture that 𝜃𝑘 = 𝐴 · (𝐷(𝑝𝑘 , 𝐹𝑘))
1
𝜂 for some 𝐴 ≥ 0. Then the above evaluated for any 𝑘 simplifies to

𝜒1+𝜁𝐴(1+𝜂)𝜁

(
𝐾∑
𝑘=1

(𝐷(𝑝𝑘 , 𝐹𝑘))1+1/𝜂

1 + 𝜂

)𝜁
= 𝐴−𝜂 (C.20)

which implies

𝐴 = 𝜒− 1+𝜁
𝜂+𝜁+𝜂𝜁

(
𝐾∑
𝑘=1

(𝐷(𝑝𝑘 , 𝐹𝑘))1+1/𝜂

1 + 𝜂

)− 𝜁
𝜁+𝜂+𝜂𝜁

(C.21)

See that this value of 𝐴 decreases in the demand for each technology and in the cost shifter 𝜒. We can
solve now for the value of the capacity which is

𝐶 = 𝐴(1+𝜂)
𝐾∑
𝑘=1

(𝐷(𝑝𝑘 , 𝐹𝑘))1+1/𝜂

1 + 𝜂

= 𝜒− (1+𝜂)(1+𝜁)
𝜂+𝜁+𝜂𝜁

(
𝐾∑
𝑘=1

(𝐷(𝑝𝑘 , 𝐹𝑘))1+1/𝜂

1 + 𝜂

) 𝜂
𝜁+𝜂+𝜂𝜁

See in particular, as 𝜁 → ∞ or marginal costs of expanding the capacity become sufficiently large,
then the model converges to one in which capacity is fixed at 𝐶 = 1/𝜒.

This result has also the following implication when read “backward”: the assumption that directed
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innovation has a “zero effect” for a given crop maps to a unique level of the cost 𝜒. Consider now
two vectors (𝜃𝑘)𝐾𝑘=1 and (𝜃′

𝑘
)𝐾
𝑘=1 that solve the monopolist’s problem respectively for different prices

and climate distributions (also denoted with primes, in the second case). Assume that the following
condition holds which, in certain units, implies that aggregate demand for technology across crops
increased:

𝐾∑
𝑘=1

(𝐷(𝑝′𝑘 , 𝐹
′
𝑘))

1+1/𝜂 ≥
𝐾∑
𝑘=1

(𝐷(𝑝𝑘 , 𝐹𝑘))1+1/𝜂 (C.22)

Now consider a crop that had a positive demand shock or𝐷(𝑝′
𝑘
, 𝐹′

𝑘
) ≥ 𝐷(𝑝𝑘 , 𝐹𝑘). Note that the growth

rate in technology for crop 𝑘 is, up to 𝐴 and 𝐴′,

𝜃′
𝑘

𝜃𝑘
=
𝐴′

𝐴

(
𝐷(𝑝′

𝑘
, 𝐹′

𝑘
)

𝐷(𝑝𝑘 , 𝐹𝑘)

) 1
𝜂

(C.23)

and
𝜃′
𝑘

𝜃𝑘
= 1 ⇔ 𝐴′

𝐴
=

(
𝐷(𝑝′

𝑘
, 𝐹′

𝑘
)

𝐷(𝑝𝑘 , 𝐹𝑘)

)− 1
𝜂

(C.24)

Plugging into the expression for 𝐴, the right hand side is(∑𝐾
𝑘=1 𝐷(𝑝′

𝑘
, 𝐹′

𝑘
)1+1/𝜂∑𝐾

𝑘=1 𝐷(𝑝𝑘 , 𝐹𝑘)1+1/𝜂

)− 𝜁
𝜁+𝜂+𝜁𝜂

=

(
𝐷(𝑝′

𝑘
, 𝐹′

𝑘
)

𝐷(𝑝𝑘 , 𝐹𝑘)

)− 1
𝜂

(C.25)

or, taking each side to the power −𝜂,(∑𝐾
𝑘=1 𝐷(𝑝′

𝑘
, 𝐹′

𝑘
)1+1/𝜂∑𝐾

𝑘=1 𝐷(𝑝𝑘 , 𝐹𝑘)1+1/𝜂

) 𝜂𝜁
𝜁+𝜂+𝜁𝜂

=
𝐷(𝑝′

𝑘
, 𝐹′

𝑘
)

𝐷(𝑝𝑘 , 𝐹𝑘)
(C.26)

For fixed 𝜂, or convexity of crop-specific costs, this is solved by

𝜁 =
𝜂

𝜂 + 1

log 𝐷(𝑝′
𝑘
,𝐹′
𝑘
)

𝐷(𝑝𝑘 ,𝐹𝑘 )

𝜂
𝜂+1 log

∑𝐾
𝑘=1 𝐷(𝑝′

𝑘
,𝐹′
𝑘
)1+1/𝜂∑𝐾

𝑘=1 𝐷(𝑝𝑘 ,𝐹𝑘 )1+1/𝜂 − log 𝐷(𝑝′
𝑘
,𝐹′
𝑘
)

𝐷(𝑝𝑘 ,𝐹𝑘 )

≥ 0 (C.27)

provided that the crop’s demand growth is lower than the appropriate CES average of overall demand
growth:

log
𝐷(𝑝′

𝑘
, 𝐹′

𝑘
)

𝐷(𝑝𝑘 , 𝐹𝑘)
≤ 𝜂

𝜂 + 1 log
∑𝐾
𝑘=1 𝐷(𝑝′

𝑘
, 𝐹′

𝑘
)1+1/𝜂∑𝐾

𝑘=1 𝐷(𝑝𝑘 , 𝐹𝑘)1+1/𝜂
(C.28)

When this holds at equality, then 𝜁 = ∞ and the model simulates a capacity constraint for research.
Thus our approach of normalizing a “zero progress” crop to a measure of central tendency for
observed damages at least qualitatively matches the predictions of this model with flexible capacity.
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D Extreme Exposure: Measurement and Validation

In this Appendix, we first describe in detail how to calculate Extreme Exposure from the raw tem-
perature data. We then show validation that our measure of crop-specific extreme exposure explains
crop yields and, in terms of explanatory power, out-performs non-crop-specific methods based on
the same data.

D.1 Construction

We follow the procedure outlined in Schlenker and Roberts (2009) to compute daily temperature
averages since 1950 from raw data on daily maximum and minimum temperatures. This includes
interpolating the portion of a day that is within a particular temperature range and aggregating
to US counties using only grid cells that are identified via satellite data to contain cropland. We
thank Wolfram Schlenker for making these data available on his website at the following link: http:
//www.columbia.edu/~ws2162/links.html.

We now describe the method in more detail. We first define the following object that counts the
number of degree days relative to a specific cutoff 𝑇 in a specific (2.5 mile by 2.5 mile) grid cell:

DegreeDays(𝑇;𝑇high,𝑑,𝑔 , 𝑇low,𝑑,𝑔) :=


0 if 𝑇high,𝑑,𝑔 < 𝑇

𝑇avg,𝑑,𝑔 − 𝑇 if 𝑇low,𝑑,𝑔 > 𝑇

𝑔(𝑇;𝑇high,𝑑,𝑔 , 𝑇low,𝑑,𝑔) otherwise

where 𝑇avg,𝑑,𝑔 := 𝑇low,𝑑,𝑔+𝑇high,𝑑,𝑔
2 is the midpoint of the high and low temperatures and the specific

interpolation function 𝑔(·) is given by the following:

𝑔(𝑇;𝑇min , 𝑇max) =
1
𝜋

( (
𝑇avg,𝑑,𝑔 − 𝑇

)
· cos−1

(
𝑇 − 𝑇avg,𝑑,𝑔

𝑇avg,𝑑,𝑔

)
+

(
𝑇avg,𝑑,𝑔 · sin

(
𝑇 − 𝑇avg,𝑑,𝑔

𝑇avg,𝑑,𝑔

)))
This function smoothly interpolates between 0 and 𝑇low,𝑑,𝑔+𝑇high,𝑑,𝑔

2 .
Next, within a given county, we aggregate the previous measure across grid cells that have planted

cropland using weights 𝑤𝑔 :

DegreeDays𝑖(𝑇; 𝑑) :=


∑
grid 𝑔∈𝑖

𝑤𝑔 · DegreeDays(𝑇;𝑇high,𝑑,𝑔 , 𝑇low,𝑑,𝑔)


The weights 𝑤𝑔 on individual grid-cells encode what fraction of the grid-cell is farmland based on
satellite data, as done in Schlenker and Roberts (2009).

We sum the previous over all days in the summer growing season April to October, within a given
decade (e.g., 1950-59, 1960-69) indexed by 𝑡:

DegreeDays𝑖 ,𝑡(𝑇) :=
∑

day 𝑑∈𝑡
DegreeDays𝑖(𝑇; 𝑑)
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The units for this measure are “extreme degree days per decade.”
We finally make this measure crop-specific by substituting in the crop-specific maximum optimal

temperature from EcoCrop. This step is described in the main text. This discussion connects with the
measurement in the main text when we define Extreme Exposure at the location, crop, and time level
as degree days in excess of the crop-specific threshold 𝑇Max

𝑘
:

ExtremeExposure𝑖 ,𝑘,𝑡 := DegreeDays𝑖 ,𝑡(𝑇Max
𝑘

)

D.2 Validation: Extreme Heat Exposure and Crop Yields

We validate this measure of extreme exposure as a shock to crop yields, and also investigate the share
of variation in crop yields caused by temperature that it explains. First, as described in the main
text, we show that ExtremeExposure𝑖 ,𝑘 has a significant and substantial negative effect on crop yields.
These results are reported in Table A2.

Second, we compare the variation in yields of staple crops (corn, wheat, and soy) explained by
our one-dimensional measure to the variation in yields of staple crops explained by a more flexible
approach that captures exposure to different parts of the temperature distribution. In particular, in
each county we determine the number of days in each five degree bin, with an upper bound of 45
degrees Celsius (that is, our highest bin is the number of days greater than 45 degrees Celsius). We
then interact each of these bins with staple crop fixed effects. This vector of interactions captures the
effect of exposure to temperatures in all parts of the distribution, and allows its effect to differ for each
crop. We then predict crop yields using this full vector of interactions:

log
(
yield𝑖 ,𝑘

)
= 𝑍′Γ + 𝛼𝑖 + 𝛼𝑘 + 𝜀𝑖𝑘 (D.1)

where 𝑍′ is the full set of interactions between the number of days in each temperature bin and crop
fixed effects. To gauge the explanatory power of our one-dimensional temperature shock, we compare
the within-𝑅2 of (D.1) to the within-𝑅2 of (3.2), which only includes ExtremeExposure𝑖 ,𝑘 on the right
hand side (along with crop and county fixed effects). Our main conclusion is that ExtremeExposure𝑖 ,𝑘
explains a large share of the variation in crop yields caused by temperature; across specifications,
its within-𝑅2 is greater than one third that of the within-𝑅2 of (D.1), even though (D.1) includes
many more variables on the right hand side of the regression. For example, when 𝑍′ includes all
temperature bins from 15◦ to 45◦+, the within within-𝑅2 is 0.23, despite the inclusion of 21 regressors,
while the within-𝑅2 from our one-dimensional measure is 0.083.

Third, we compare ExtremeExposure𝑖 ,𝑘 to alternative measures of exposure to heat that do not
take into account variation in crop-level sensitivity. In particular, we estimate:

log
(
yield𝑖 ,𝑘

)
= 𝜉 · ExtremeExposure𝑖 ,𝑘 + 𝛼𝑘 + 𝜀𝑖𝑘 (D.2)

and recover the within-𝑅2 of our measure of extreme heat exposure. We then estimate:

log
(
yield𝑖 ,𝑘

)
= 𝜉 · DegreeDaysAbove𝑧𝑖 + 𝛼𝑘 + 𝜀𝑖𝑘 (D.3)
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where DegreeDaysAbove𝑧𝑖 is the total number of degree days above temperature cut-off 𝑧 in county
𝑖. That is, it is analogous to our baseline measure except it uses the same temperature cut-off 𝑧 for all
crops. We estimate Equation D.3 for values of 𝑧 between 10 and 45 degrees Celsius. In Figure A2, we
report the distribution of within-𝑅2 measures for all estimates of (D.3) as a blue histogram, and we
also mark the within-𝑅2 from (D.2) with a dotted black line. Incorporating variation across crops in
temperature sensitivity makes it possible to explain a much larger share of variation in crop yields
than any measure that only exploits variation across places in exposure to high temperatures.
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E Agricultural Innovation and Climate Stress: Background and Narrative
Evidence

In this section, we report case-study evidence from recent advances in biotechnology suggesting that
inventors have been directing innovation toward emergent climate threats. To do this, we provide
background information on how climate stress affects plants (E.1), discuss examples of how plant
breeders develop heat- and drought-resistant varieties (E.2), and provide narrative evidence that the
intensity of heat- and drought-resistant breeding has responded to climatic trends (E.3).

E.1 The Effects of Weather Stress on Plants

Weather patterns may affect an individual plant’s morphology (i.e., physical structure), physiology
(i.e., growth, metabolism, and reproduction processes), and phenotype (i.e., the translation of genes
to observed traits) (Raza et al., 2019). All of these features jointly affect agricultural productivity
outcomes (e.g., yield of corn per planted acre). Thus, understanding the exact effect of a specific
weather feature, like exposure to extreme degree days, on an agricultural productivity outcome, like
corn yield, involves jointly modeling multiple aspects of a plant.

As an illustrative example, relevant to our empirical analysis, Lobell et al. (2013) study the effects
of exposure to degree-days above 30C on maize. Using a biophysical model, the authors find that a
critical pathway from extreme-heat exposure to reduced maize yield is water stress. More specifically,
extreme heat increases the rate at which plants draw water from the ground and exhale water through
their leaves. This specific biophysical mechanism is necessarily affected by a number of expressed
traits by the plant—two examples, in the present case, are how the plant draws water from the ground
and how the plant opens and closes pores in its leaves and stems (stomata) to breathe.

E.2 Breeding Heat- and Drought-Resistance

Traditional breeding methods select plants across a number of traits based on empirically observed
improvements in the field. The selected traits may influence a number of mechanisms regulating
a plant’s resistance to physical stress like extreme heat or drought. Moreover, improvements in
heat- and drought-tolerance based on these traditional, empirical methods may predate scientific
understanding of the exact mechanisms for yield loss due to heat and drought.

As one example, Duvick et al. (2004) survey maize breeding at the private firm Pioneer Hi-Bred
International since the early 1930s.5 The authors describe the firm’s methodology for selecting plant
lines (germplasm) as decidedly empirical:

The one consistent feature of the plant breeding group was its pragmatism. If a method
or source of germplasm worked, it was used whether or not it fit the current styles in
breeding theory. [. . . ] Widespread on-farm performance of released hybrids was used to
identify the top-performing inbreds, to winnow the best from merely average germplasm.

5Today, Pioneer is owned by Corteva Agriscience, which was itself spun off from the agricultural science division of
DuPont.
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The authors write that severe drought in the 1930s, in the company’s early stages, directed breeding
efforts toward drought-tolerance as an important secondary objective to the primary goal of increasing
grain yield. In their retrospective analysis of seven decades of field-trial data, combined with modern
genetic analysis, the authors argue that increased tolerance to biological and physical stress was
a primary cause of yield improvements. In particular, they highlight a secular trend of increased
tolerance to heat and drought. Subsequent genetic studies have clarified the mechanisms for improved
drought resistance in the Pioneer line. For instance, Habben et al. (2014) suggest an important
mechanism for drought tolerance in modern corn hybrids, including Pioneer’s, is increased catalysis
of ethylene production, which interacts with many different biochemical pathways.

An alternative method for breeding stress tolerance is direct genetic modification of organisms.
Genetic modification, unlike field-trial breeding, is predicated on understanding how a specific
molecule confers a valuable trait, and how insertion of specific genes would make a plant produce
that molecule. One example of a genetically modified organism based on this principle is Monsanto’s
DroughtGard maize. As described in the original scientific article by Castiglioni et al. (2008), Drought-
Gard maize is genetically modified to produce “Cold Shock Proteins” or CSPs. These proteins are
produced by E. coli and B. subtilis bacteria in response to cold temperature shocks and are associated
with post-shock revival. Castiglioni et al. (2008) describe the process by which the CSP-expression
gene was inserted into rice and maize plants, and they show empirically how CSP production is
associated with tolerance to heat, cold, and water-deficit shocks in these plants.

E.3 The Response of Innovation to Climatic Shocks

As alluded to earlier in the context of Pioneer’s corn breeding, a primary example of private agricul-
tural innovation’s response to climatic conditions is the intensification of hybrid plant development
in response to widespread droughts in the early 20th century. These droughts notably include the
successive droughts of the 1930s that precipitated the Dust Bowl in the US prairies. Crow (1998) and
Sutch (2008, 2011) provide detailed historical accounts of early hybrid corn breeding and adoption.
Moscona (2022) studies the response of innovation to the US Dust Bowl empirically, across a wider
range of crops, as well as the effects on downstream production. While the modern, privatized
biotechnology industry emerged primarily after these early 20th century events, agricultural histori-
ans also write about climatic stress driving innovation in the centuries prior. Olmstead and Rhode
(2011) highlight the important role of state and non-profit breeders in improving heat- and drought-
tolerance for North American wheat. Olmstead and Rhode (2008) more broadly survey biological
innovation in US agriculture in the two centuries before World War II.

Today, as mentioned in the paper’s introduction, agricultural biotechnology companies are “racing
to develop products” that address the problem of “rising temperatures” according to news reports
(Schulman, 2015). According to Gupta (2017), “Monsanto poured more than $1.5 billion into research
and development efforts last year to design better quality corn seeds and products...’In our breeding
efforts and biotech efforts, we’re making sure our products can withstand that extreme weather,’
explains Pam Strier, Monsanto’s sustainability chief.” In 2019, Syngenta allocated $2 billion toward
developing technologies that will “help farmers prepare for and tackle the increasing threats posed
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by climate change” (Syngenta, 2019). Biotechnology companies also note the fact that demand has
grown for climate-resilient seeds—relative to other varieties—because of how essential they are when
the environment is unfavorable: “As the Midwest’s climate grows hotter, Monsanto notes there’s
demand for seeds that can thrive in warmer and more extreme environments” (Gupta, 2017).

A particularly illustrative case study was the North American Drought of 2012-2013 in the US
Plains. Within two years of the drought, Monsanto released the corn variety Genuity DroughtGard
Hybrids and Pioneer-DuPont released Optimum AQUAmax, both of which were designed to remain
productive in low-moisture environments. As reviewed earlier in this section, both technologies were
based on breeding and scientific advances that took place prior to the drought. Nonetheless, their
implementation as marketable products was possibly influenced by the emergent need. In the words
of Connie Davis, corn systems technology development manager for Monsanto:

[We had] great timing to get those hybrids out when we actually saw severe to exceptional
drought in the Western Great Plains. We focused on the field corn just because that was
the biggest need... (Daniels, 2015)

These specific events are consistent with broader trends of improved drought performance in 2012-
2013 compared to a similar drought event in 1988 (Eisenstein, 2013) and, more obviously, relative to
the disastrous droughts that instigated the Dust Bowl of the 1930s (Schaper, 2012).

These patterns are not restricted to maize, or even to staple grains and oilseeds. A news report by
Daniels (2015) surveys breeding investments by Monsanto and DuPont Pioneer toward developing
heat- and drought-resistant fruit and vegetable varieties in California. Genetic modification technol-
ogy, in particular, allows for feasible transferal of drought-resistance “discoveries” from one crop to
another. Raza et al. (2019) surveys several examples of successful traits that have been applied toward
many crops. One example already given was the CSP-expression gene essential to DroughtGard.

Finally, it is worth noting that the public sector and universities are also involved in this innovative
push. In the Request for Applications for the US Department of Agriculture’s “Specialty Crop
Research Initiative,” a recurring grant available for agricultural science, “Climate adaptation” is listed
as a targeted “critical need.” Researchers at the University of California, Davis, for example, received
a $4.5 million grant from the SCRI in 2015 to “support a multidisciplinary research program aimed at
leveraging new technologies to sustain the supply of lettuce in spite of changes in climate” (Filmer,
2015). As one additional example, recent advances led by researchers at the University of Chicago in
RNA de-methylation, and their application to rice and potato cultivars, potentially drastically increase
crop yields as well as tolerance to extreme climate (Yu et al., 2021).
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F Crop Switching, Market Size, and Innovation

Our main analysis studies the relationship between temperature distress and innovation holding the
pre-period distribution of crops fixed. However, farmers may re-allocate land across crops in response
to temperature-induced productivity changes. Moreover, the presence of systematic re-allocation of
land toward certain crops opens a second potential channel through which temperature change might
affect innovation.

In this section we (i) empirically document that this re-allocation has occurred but that re-allocation
has been small in magnitude, (ii) show that controlling for predicted and actual changes in crop-level
planted area does not affect our baseline results, and (iii) show that nevertheless temperature-induced
changes in market size predict crop-level innovation as suggested by the theory.

F.1 County-level Reallocation

The first sub-question that needs to be answered is whether climate incidence predicts re-allocation
of land in particular areas away from more damaged crops and toward less-damaged crops. Let
Area1959

𝑘,𝑖
be the area planted for crop 𝑘 in county 𝑖 in 1959 and let Area2012

𝑘,𝑖
be the same in 2012. For

all county-by-crop observations we estimate the following specification:6

asinh(Area2012
𝑘,𝑖

) = 𝛼𝑘𝑠 + 𝛿𝑖 + 𝜓 · asinh(Area1959
𝑘,𝑖

) + 𝜋 · ΔExtremeExposure𝑘,𝑖 + 𝜀𝑘,𝑖 (F.1)

where 𝛼𝑘𝑠 are crop-by-state fixed effects and 𝛿𝑖 are county fixed effects. The inclusion of county
fixed effects absorbs the fact that certain countries have become more or less agricultural overall since
1959. The coefficient𝜋measures the extent to which local temperature distress induces switching away
from a particular crop. Crucially, since our measure of ExtremeExposure𝑘,𝑖 relies only on temperature
realizations and crop-level physiology, ewe can measure ExtremeExposure𝑘,𝑖 for all county-crop pairs
even if the crop is not grown in the county during the pre period. Thus, the specification allows us to home
in on the effect of crop-by-county specific climate distress on production allocation.

If crop allocation choices indeed have reacted to changes in temperature, we would hypothesize
that 𝜋 < 0. This captures both the fact that production has declined where temperature change has
made cultivation less productive and that production has increased where temperature change has
made cultivation more productive. We find that𝜋 is negative and statistically significant, as predicted,
but that it is small in magnitude. A one standard deviation increase in crop-by-county temperature
distress reduces planted area by just 0.018 standard deviations. Thus, we find that crop allocation has
reacted to temperature distress as we measure it, but the reallocation of production has been limited.

6The specialization to counties with more planted area, we found, dramatically increases the fit of this first regression,
in part because it removes the "obvious" zeros (e.g., regardless of the effects of climate change, there will not likely by any
significant sorghum cultivation in New York County (Manhattan)).
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Table F1: Crop Switching and Technology Development
(1) (2) (3) (4) (5) (6) (7) (8)

Δ	ExtremeExposure 0.0178*** 0.0139*** 0.0217*** 0.0235*** 0.0135*** 0.00998*** 0.0112*** 0.0105**
(0.00486) (0.00374) (0.00594) (0.00687) (0.00381) (0.00344) (0.00402) (0.00435)

log	EE-Predicted	Natl.	Area 0.536* 0.325 0.523** 0.506**
(0.275) (0.248) (0.209) (0.214)

log	Natl.	Area	(endogenous	control) 0.268*** 0.285*** 0.273*** 0.275***
(0.0414) (0.0546) (0.0577) (0.0598)

Log	1959	area	harvested Yes Yes Yes Yes Yes Yes Yes Yes
Pre-period	climate	controls No Yes Yes Yes No Yes Yes Yes
Pre-period	varieties No No Yes Yes No No Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. No No No Yes No No No Yes
Observations 55 55 55 55 55 55 55 55

Dependent	Variable	is	New	Crop	Varieties	

Notes :	The	unit	of	observation	is	a	crop.	In	columns	1-4,	we	include	log	of	crop-level	planted	area	predicted	by	the	empirical	
model	of	temperature	change	induced	crop	switching.	In	columns	5-8,	we	include	log	of	crop-level	planted	area	in	2012	as	
measured	from	the	Census	of	Agriculture.	The	additional	controls	included	in	each	specification	are	noted	at	the	bottom	of	each	
column.		Robust	standard	errors	are	reported	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	
levels.	

F.2 Crop Switching and Innovation

Next, we investigate whether accounting for crop-level changes in planted area affect our baseline
estimates. For each county in the sample, we use the estimation of Equation (F.1) to predict the area
devoted to each crop in each county in 2012: �Area

2012
𝑘,𝑖 . We then aggregate these estimates to compute

a measure of “predicted national area” for each crop in 2012 due to changes in extreme temperature
exposure:

EE-PredictedArea2012
𝑘 :=

∑
𝑖

�Area
2012
𝑘,𝑖 (F.2)

This captures the area harvested for each crop in 2012—our proxy for market size—as predicted
by changing crop allocations in response to temperature change. Next, we estimate an augmented
version of Equation (4.2) in which we control directly for changes in crop-level market size:

New Seeds𝑘 = exp
{
𝛽 · ΔExtremeExposure𝑘 + 𝛽MS · log

(
EE-PredictedArea2012

𝑘

)
+ Γ𝑋′

𝑘 + 𝜀𝑘
}

(F.3)

Our new coefficient of interest 𝛽MS captures the impact of temperature-induced expansions in crop
market size on innovative output. The control vector 𝑋′

𝑘
always includes the log of 1959 area planted

for each crop. This ensures that the coefficient 𝛽MS measures the effect of expanded market size
holding fixed initial market size. Estimates of Equation F.3 are reports in columns 1-4 of Table F1. The
first key finding is that controlling for temperature-induced changes in market size have virtually no
impact on 𝛽, the relationship between temperature distress and variety development. Our baseline
estimates are not biased by changes in planted area. The second key finding is that, intuitively, 𝛽𝑀𝑆 is
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positive; moreover, it is statistically distinguishable from zero in three of the four specifications. This
suggests that temperature-induced market expansion is an independent and potentially important
channel through which climate change affects patterns of innovation.

As a final check that our baseline estimates operate independently from crop-level changes in
planted area over the sample period, in columns 5-8 of we control directly for the measured changes in
the planted area of each crop. While this qualifies as a “bad control” and as a result this specification
comes with all the associated caveats, it is reassuring that the relationship between temperature
distress and variety development remains very similar after accounting for endogenous changes in
planted area.
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G Global Analysis

In this section, we describe our investigation of the relationship between global temperature distress
and US innovation. We first explain our strategy for measuring crop-level exposure to extreme
temperatures around the world, and then we describe our main findings using this global data.

G.1 Measurement

Our strategy for measuring crop-level exposure to changes in extreme temperature consists of com-
bining global temperature data from Muñoz-Sabater et al. (2021) with global geo-coded crop-level
planting data from Monfreda et al. (2008). Muñoz-Sabater et al. (2021) is the fifth-generation data
set produced by the European Centre for Medium-Range Weather Forecasts, in collaboration with
the European Commission and Copernicus Climate Change Service. It is a reanalysis data set that
combines weather observations from around the world with model data in order to generate a com-
plete global gridded temperature data set at the hourly level with a grid size of 0.25 degrees. The
data are reported from 1979 to the present, and so for our global analysis we focus on long-difference
specifications comparing the 1980s to the 2010s.

The Monfreda et al. (2008) data set, also known as the EarthStat Database, was created by combin-
ing national, state, and county level census data with crop-specific maximum potential yield data, to
construct a 5-by-5 minute grid of the area devoted to each crop circa 2000. Our final sample consists
of the 36 crops that are both represented in Monfreda et al. (2008) and our own baseline sample.

Combining the two sources of data, we measure the change in each crop’s extreme-heat exposure
in all countries outside of the US (ΔExtremeExposureROW

𝑘
) exactly as described for the US in Section

3.2 of the paper.

G.2 Results

Figure G1 plots the cross-crop relationship between the change in extreme heat exposure in the US
and in the rest of the world, which is almost completely flat. The set of crops most damaged by high
temperatures in the US is a very different set from that most affected by extreme heat in the rest of the
world, suggesting that crop-specific adaptation technology developed for the US may not be meeting
the most pressing needs around the world. This finding is a first indication that extreme-heat exposure
in the rest of the world does not bias or mediate our baseline estimates since it is uncorrelated with
crop-level extreme-heat exposure in the US.

Next, in Table G1, we investigate the impact of exposure to extreme heat outside of the US on new
variety development in our baseline specification. In column 1, we re-produce our baseline estimates
of the relationship between extreme heat exposure in the US and new variety development using only
the restricted sample of crops that are part of the global analysis. The relationship remains positive,
significant, and similar in magnitude on this restricted sample. In the second column, we include
ΔExtremeExposureROW

𝑘
in the regression. The estimate of the coefficient on ΔExtremeExposureROW

𝑘

is statistically indistinguishable from zero and, if anything, negative. Probing the estimate in greater
detail, we find that the negative point estimate is driven entirely by the US staple crops wheat, corn,
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Figure G1: Crop-Level Extreme-Heat Exposure: US vs. the Rest of the World
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Notes: This figure plots the relationship between crop-level ΔExtremeExposure, computed from the
1980s to the 2010s, in the US compared to the rest of the world. To compute both sets of values,
we combine temperature data from Muñoz-Sabater et al. (2021) with crop-level planting data from
Monfreda et al. (2008).

and soy, which have been the subject of substantial innovation but have been relatively less affected
by damaging temperature trends in the rest of the world. When we control for an indicator variable
that equals one for these three crops (column 3), the coefficient estimate on ΔExtremeExposureROW

𝑘

declines by roughly two-thirds and is very close to zero.
The null effect of ΔExtremeExposureROW

𝑘
is not driven by differences in the data sources and

measurement strategy that we use to measure extreme-heat exposure outside of the US. In Panel A
of Table G2, we replicate the paper’s main results using the measurement strategy described in this
section. There is a positive and significant relationship between crop-level extreme-heat exposure in
the US and innovation, and the estimate is similar after controlling directly for trends in pre-period
innovation (column 2) and the quadratic polynomial in each crop’s temperature cut-off (column 3).
In Panel B, we show that in the exact same specifications there is no relationship between crop-level
extreme-heat exposure outside of the US and technology development.

Taken together, these results indicate that our main estimates are not affected or mediated by
crop-level temperature distress outside the US. More speculatively, they instead indicate that US
innovation responds substantially more strongly (if not exclusively) to climate distress in the US. This
dovetails with a growing body of work that documents strong home bias in technology development
(Costinot et al., 2019; Moscona and Sastry, 2022). Moreover, especially since the US represents a
large share of global agricultural innovation, these findings indicate that the rest of the world may
benefit substantially less from climate-induced adaptation technology and international technological
spillovers. While a full analysis of global innovation and technology diffusion is beyond the scope of
this paper, these topics strike us as an important area for future research.
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Table G1: Temperature Distress and Innovation: US vs. the Rest of the World
(1) (2) (3)

Δ	ExtremeExposure	in	the	US,	1980s-2010s 0.0183*** 0.0178*** 0.0138**
(0.00644) (0.00664) (0.00674)

Δ	ExtremeExposure	in	the	Rest	of	the	World,	1980s-2010s -0.0226 -0.00787
(0.0150) (0.0154)

Log	area	harvested	in	the	US Yes Yes Yes
Log	area	harvested	in	the	rest	of	the	world No Yes Yes
US	staple	crop	indicator No No Yes
Observations 36 36 36

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	
released	from	1980	to	the	present.	The	controls	included	in	each	specification	are	noted	at	the	bottom	of	
each	column.	US	staple	crops	are	defined	as	corn,	wheat,	and	soy.	In	the	first	column,	we	estimate	the	
relationship	between	our	baseline	measure	of	extreme	heat	exposure	and	new	variety	releases	on	the	
restricted	subsample	used	for	the	global	analysis.	In	columns	2-3,	we	also	include	extreme	heat	exposure	
measured	in	the	rest	of	the	world.		Robust	standard	errors	are	reported	in	parentheses	and	*,	**,	and	***	
indicate	significance	at	the	10%,	5%,	and	1%	levels.

Table G2: US vs. the Rest of the World: Sensitivity

(1) (2) (3)

Δ	ExtremeExposure	in	the	US,	1980s-2010s 0.0376** 0.0311** 0.0336**
(0.0147) (0.0123) (0.0131)

Observations 34 34 34

Δ	ExtremeExposure	in	the	Rest	of	the	World,	1980s-2010s -0.0174 -0.0141 -0.0116
(0.0179) (0.0167) (0.0204)

Observations 36 36 36
Log	area	harvested	from	EarthStat Yes Yes Yes
US	Staple	Crop	Indicator Yes Yes Yes
Pre-period	varieties No Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. No No Yes

Panel	A:	Temperature	Distress	in	the	US

Panel	B:	Temperature	Distress	in	the	Rest	of	the	World

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	released	
from	1980	to	the	present.	The	controls	included	in	each	specification	are	noted	at	the	bottom	of	each	column.	US	
staple	crops	are	defined	as	corn,	wheat,	and	soy.		In	Panel	A,	the	independent	variable	of	interest	is	crop-level	
extreme	temperature	exposure	in	the	US	computed	using	the	ERA-5	temperature	data	and	EarthStat	data	on	crop	
planting	patterns,	in	Panel	B	the	independent	variable	of	interest	is	crop-level	extreme	temperature	exposure	
outside	of	th	US	computed	using	the	ERA-5	temperature	data	and	EarthStat	data	on	crop	planting	patterns.		Robust	
standard	errors	are	reported	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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H Modeling Crop Choice in the Counterfactual

In this section we explore the possibility that the pattern of crop switching might shape the impact
of climate change in future climate scenarios. To project future crop allocations and the extent to
which they change as a result of temperature change, we return to our estimates from Section F.1
and use these alongside our measures of predicted future exposure to extreme temperature at the
crop-by-county level.

Using measures of extreme exposure ΔExtremeExposure𝑘,𝑖(𝑑, 𝑟) for each decade 𝑑 ∈ {2050, 2090}
and for each RCP 𝑟 ∈ {4.5, 6.0, 8.5} we estimate Area𝑘,𝑖(𝑑, 𝑟) as:

asinh(Area𝑘,𝑖(𝑑, 𝑟)) = �̂�𝑘𝑠 + �̂�𝑖 + �̂� · asinh(Area2012
𝑘,𝑖

) + �̂� · ΔExtremeExposure𝑘,𝑖(𝑑, 𝑟) + 𝜀𝑘,𝑖 (H.1)

where estimated coefficients (denoted with a hat) are from Equation F.1 and recall �̂� < 0. We use
these predicted future areas under each climate scenario in our analysis of how crop switching might
affect our estimates of the causal effect of technology development on climate damage. That is, we
re-estimate our counterfactuals after assuming that planting patterns correspond to this endogenous
allocation as predicted by changing temperature realizations. As reported in Section 4.3.6, we find
lower estimates of climate damage under this scenario, but percent mitigation that is comparable to
our baseline (18.9%).
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