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Abstract

We study the implications of contagious beliefs for business cycles. We introduce a

real business cycle model in which heterogeneous firms dynamically switch between

models of the world. Models spread based on both their consistency with outcomes,

as in models of learning, and their prevalence, as in models of social contagion. The

spread of models generates endogenously persistent belief-driven fluctuations. If con-

tagion is sufficiently strong, models can “go viral” and induce hysteresis in the model’s

unique equilibrium. To take this framework to the data, we adopt a “micro-to-macro”

approach in which we measure firms’ models using the sentiment of their language in

regulatory filings. We find that firms accelerate hiring when they are optimistic, even

though this sentiment does not positively predict future firm fundamentals or perfor-

mance. Moreover, sentiment spreads contagiously at the aggregate and industry levels.

Mapping our microeconomic estimates into the model, we find that contagious beliefs

account for one fifth of business cycle fluctuations in aggregate output.
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1 Introduction

One of the oldest ideas in macroeconomics is that fluctuations in beliefs drive business cycles.

Pigou (1923) wrote that the “varying expectations of business men . . . , and not anything else,

constitute the immediate and direct causes or antecedents of industrial fluctuations.” Keynes

(1936) similarly argued that the mercurial moods of firm managers—whose “spontaneous

optimism” might just as suddenly give way to fear and panic—drove booms and busts.

Of course, such assertions beg the question: what drives belief fluctuations? The classics,

while not fully precise about the details, suggest an important role for human impulses

that are divorced from current economic fundamentals: the “psychological causes” of Pigou

(1923) and “animal spirits” of Keynes (1936). A long tradition in macroeconomics has

formalized these ideas in various ways: for example, with noise shocks that directly sway

aggregate beliefs (e.g., Lorenzoni, 2009; Angeletos and La’O, 2010, 2013; Wiederholt, 2015;

Benhabib, Wang, and Wen, 2015; Schaal and Taschereau-Dumouchel, 2023; Guerreiro, 2023),

news about future productivity (e.g., Jaimovich and Rebelo, 2009; Barsky and Sims, 2012;

Blanchard, L’Huillier, and Lorenzoni, 2013), or “sunspots” that allow agents to coordinate

on one of many equilibria (e.g., Boldrin and Woodford, 1990; Benhabib and Farmer, 1994).

A different literature studies how beliefs spread across people. One important hypothesis

is that economic attitudes are contagious like a virus (Carroll, 2001; Burnside, Eichenbaum,

and Rebelo, 2016; Carroll and Wang, 2022; Jamilov, Kohlhas, Talavera, and Zhang, 2024).

Taking this argument further, Shiller (2020) puts contagion at the core of his theory of

“Narrative Economics.” Moreover, he argues that contagious economic attitudes are best

detected in language rather than quantitative statistics, since the former better reveal emo-

tional states—echoing Keynes’ (1936) assertion that the animal spirits that drive decisions

cannot be understood by merely considering “mathematical expectations.”

This paper introduces a framework to understand how contagious beliefs shape business

cycles. Our contribution is to “study Keynes through the lens of Shiller.” That is, we

revisit belief-driven business cycles by integrating a macroeconomic model in which beliefs

can spread contagiously with microeconomic data that connect the language of economic

agents with their decisions.

To do this, we first develop a real business cycle model in which heterogeneous beliefs can

gain or lose prevalence based on their past prevalence, consistent with contagion, or based

on past economic outcomes, consistent with standard notions of learning. We characterize

how belief-driven fluctuations are jointly shaped by contagiousness and other sources of

strategic complementarity (see e.g., Basu, 2005). Empirically, we introduce a new method to

discipline models of belief-driven cycles using panel data on the sentiment of firm managers’
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language. At the firm-level, we find that textual sentiment leads to short-run hiring booms,

but does not predict future productivity growth, consistent with the classical notion of an

“animal spirit” and inconsistent with the notion that sentiment measures news. Moreover,

sentiment spreads contagiously at the aggregate and industry levels. Quantitatively, using

these microeconomic measurements to discipline our macroeconomic model, we find that

fluctuations in firms’ sentiment account for about 20% of the US business cycle. Endogenous

persistence via contagion explains much of these effects. Taken together, our results suggest

that belief contagion underlies first-order features of business cycles.

Model. In order to make decisions, agents forecast economic fundamentals using one of a

finite set of probability models. At an individual level, model adoption is a Markov process

that depends on one’s own past model, the relative prevalence of models in the population,

and endogenous economic outcomes. The second feature incorporates the possibility of

contagion emphasized by Carroll (2001) and Shiller (2017). The third feature allows agents

to associate certain macroeconomic outcomes with certain models, consistent with theories

of memory (Kahana, 2012) and learning (e.g., Eusepi and Preston, 2011; Molavi, 2019).

We embed these dynamics of heterogeneous beliefs in a real business cycle model. The

agents are heterogeneous firms that compete monopolistically, the fundamental is produc-

tivity, and the two models are optimism and pessimism about productivity. The remaining

microfoundations of the consumption, labor supply, and production blocks of the model are

intentionally standard, following the canonical approach in the literature on business cycles

with dispersed information (Lorenzoni, 2009; Angeletos and La’O, 2010). Our goal is to

study how contagious business cycles can manifest in this simple framework, intentionally

abstracting from richer aspects of firm and household decision-making to isolate the role of

contagious beliefs when they are the only endogenous state variable.1

Our solution concept is a variant of rational expectations equilibrium in which agents

“agree to disagree” while making correct inferences regarding equilibrium outcomes condi-

tional on their misspecified models about fundamentals. That is, in equilibrium, models of

productivity are also models of endogenous outcomes and even how they respond to shocks.

Theoretical Results. We theoretically study how contagious beliefs co-evolve with the

business cycle. We first establish that there is a unique equilibrium in which aggregate out-

put depends both on aggregate productivity and the fraction of optimists in the population.

We refer to the latter effect as the non-fundamental component of aggregate output, because

it is driven by the agents’ choice of models rather than any fundamental change in produc-

tivity. We decompose this component into a partial-equilibrium effect of optimism on firms’

1Additional state variables such as capital would only serve to amplify the mechanisms that we highlight
and quantify in our analysis.
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expansion as well as a general-equilibrium multiplier driven by strategic complementarities:

even if a firm is pessimistic, the presence of other, more optimistic firms causes them to

produce more. The equilibrium effect of optimism on output is smaller if firms have access

to more precise information, as this leads them to rely less on priors to form their beliefs.

However, because of the multiplier, the power of the truth to stop false models of the world

is weakest exactly when those models are strongest.

We next describe the dynamics of the fraction of optimists in the population (“opti-

mism”), the key new state variable in our economy. For a fixed level of aggregate produc-

tivity, there always exists a steady-state level of optimism, but there may be multiple. We

provide a necessary and sufficient condition for a particularly extreme type of steady-state

multiplicity: if models are sufficiently contagious and/or the multiplier is sufficiently large,

then unanimous optimism and unanimous pessimism are both stable steady states. That is,

in the economy’s unique equilibrium, contagious optimism or contagious pessimism can “go

viral” or die out entirely, depending on their initial prevalence.

Contagious business cycles have three key properties. First, if contagiousness and the mul-

tiplier are sufficiently high, the economy can feature hysteresis : history determines whether

the economy is optimistic and high-output or pessimistic and low-output. This prediction

may remind of the sunspot-driven fluctuations in multiple-equilibrium models (Azariadis,

1981; Cooper and John, 1988; Benhabib and Farmer, 1994), but it differs in several crucial

respects: it obtains in a unique-equilibrium model, it allows the analyst to make history-

based predictions for the economy’s regime switches, and it is underpinned by dynamic

complementarity through belief dynamics rather than static complementarity through, for

example, external returns to scale. Second, productivity shocks have endogenously persistent

effects on output because of belief evolution. This can generate hump-shaped impulse re-

sponses to fully transitory shocks. In cases consistent with hysteresis, transitory shocks can

even have permanent effects because a new model takes hold. This is an important differ-

ence relative to models of dispersed information (see e.g., Woodford, 2003; Lorenzoni, 2009;

Angeletos and La’O, 2010), in which one-time shocks can have persistent effects only if fun-

damentals are themselves persistent. Third, when hit by repeated shocks, the economy can

experience boom-bust cycles because of fluctuations between high and low optimism. In the

hysteresis case, these can be slow oscillations between periods of stable extreme pessimism

(“lost decades”) and stable extreme optimism (“roaring decades”).

We finally show how the model can be identified using data on the choices of optimistic

versus pessimistic firms, the updating process of firms’ models, and standard parameters

that control equilibrium effects. We subsequently pursue this “micro-to-macro” approach.
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Empirical Results. Motivated by Shiller’s (2017) argument that language reveals the

most relevant information on individuals’ economic attitudes, we measure firms’ optimism

using the text of US public firms’ 10-K regulatory filings and their earnings conference calls.

Specifically, we apply the method of Loughran and McDonald (2011) to measure positive

versus negative sentiment in language using a bag-of-words approach. This is a standard,

well-studied, and commonly applied approach in the literature (Loughran and McDonald,

2020). While there are, of course, other ways to measure sentiment, we emphasize two

points. First, our micro-to-macro approach is modular: one can substitute any other measure

of sentiment and follow our strategy. Second, more complex natural-language-processing

methods (e.g., large language models) have salient downsides: they are opaque, produce non-

reproducible output, and do not (yet) have a track record of outperforming simpler measures

in economic analyses (Hassan, Hollander, Kalyani, van Lent, Schwedeler, and Tahoun, 2024).

We use our sentiment measure to construct an empirical proxy for whether firms hold the

optimistic or pessimistic model in the theory, noting that the theoretical predictions apply

equally to contagious optimism about aggregate or firm-level conditions. We combine all

these measures with Compustat data on firms’ decisions and financial performance, as well

as data from IBES on managers’ and equity analysts’ forecasts.

We first estimate how optimism affects firm decisions. Our model implies that the partial-

equilibrium effect of optimism on hiring is identified in a firm-level panel regression that

controls for firm and time fixed effects, which sweep out the correlation of firms’ optimism

with aggregate fundamentals and aggregate sentiment. Implementing this strategy, we find

that optimistic firms hire 3.6 percentage points more per year than their pessimistic counter-

parts. This effect is quantitatively robust to controlling for canonical measures of firm-level

fundamentals: productivity, leverage, stock returns, and Tobin’s q. To further isolate a plau-

sibly exogenous shifter of mental models that is independent of news, we leverage plausibly

exogenous changes in firm CEOs as natural experiments. We find that changes in optimism

triggered by the arrival of a new CEO have, if anything, even greater effects on hiring.

We further show that textual optimism predicts hiring, even conditional on standard

proxies for the beliefs of firms and equity analysts used in the literature (e.g., Gennaioli, Ma,

and Shleifer, 2016; Bordalo, Gennaioli, Shleifer, and Terry, 2021). This supports the idea that

managers use non-quantitative “soft information” to make decisions (Liberti and Petersen,

2019). And it is moreover consistent with the hypothesis of Keynes (1936) and Shiller (2020)

that measuring animal spirits requires going beyond “mathematical expectations.”

We next show two additional results that validate our interpretation of optimism as

capturing a non-fundamental “animal spirit” and reject an alternative interpretation that

the measure merely picks up news about future fundamentals. First, in firm-level local

4



projection regressions, we find that optimism predicts no further TFP growth and negatively

predicts future stock returns and profitability. That is, firms that are currently optimistic

and accelerating hiring become no more productive, continue to expand operations, and

ultimately do worse, not better, in the near future. This is inconsistent with a model in

which measured optimism reflects news about growing productivity or demand: even if

signals are noisy, the news would be true on average. But it is consistent with our model

in which individual managers have tendencies toward optimism (and pessimism) that can

be disconnected from fundamentals. Second, using managerial guidance data, we show

that managers predictably overestimate firm performance after writing optimistic reports or

giving optimistic earnings calls. This is inconsistent with a view that optimistic (pessimistic)

managers are interpreting positive (negative) news using Bayes’ rule, but consistent with our

framework of model dynamics.

We finally estimate how optimism spreads across firms. We find that greater aggregate

optimism and higher aggregate real GDP growth are associated with a greater probability

that a firm is optimistic in the following year—that is, optimism is contagious and associa-

tive. We also find evidence of contagiousness and associativeness at the industry level when

we non-parametrically control for aggregate conditions with time fixed-effects. Moreover,

both these aggregate and industry-level results are robust to controlling for future economic

conditions. This finding is inconsistent with the key threat to our interpretation: that ag-

gregate optimism drives future optimism through its correlation with omitted positive news

about economic conditions. To further test the validity of our interpretation, we construct a

granular instrumental variable (Gabaix and Koijen, 2020) for aggregate optimism based on

idiosyncratic shocks to large firms. We find similar results using this approach.

Quantification. Finally, we employ these empirical results—disciplining both the partial

equilibrium effects of optimism and its dynamic spread—in the model-derived identifica-

tion scheme, along with a standard calibration for preference and technology parameters.

Quantitatively, we find that contagious optimism contributes significantly to the US business

cycle. Decomposing aggregate output into the components attributable to optimism versus

fundamentals, we find that measured aggregate movements in optimism account for 32%

of output loss during the early 2000s recession and 18% during the Great Recession. More

systematically, fluctuations in optimism account for 19% of output variance as well as 33%

of the short-run (one-year) and 79% of the medium-run (two-year) autocovariance in output.

Thus, belief dynamics lead to strong endogenous persistence: the model generates persistent

business cycles even with close to i.i.d. shocks. This represents an important difference

between our model and those of noise shocks or dispersed information (see e.g., Woodford,

2003; Lorenzoni, 2009; Angeletos and La’O, 2010), which require persistent exogenous shocks
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to explain business cycles. However, while internal propagation is strong enough to underlie

this important feature of fluctuations, it is insufficient to generate hysteresis.

In an extension, we study an enriched model that allows multiple latent topics to form

a basis for overall optimism. We return to the data to measure more granular topics of

firms’ language using two methods: (i) identifying the nine Perennial Economic Narratives

introduced by Shiller (2020) and (ii) estimating an unsupervised Latent Dirichlet Allocation

(LDA) model (Blei, Ng, and Jordan, 2003) that allows the text to speak flexibly about

what firms are discussing. We find that the interaction of many jointly evolving and highly

contagious topics—that can individually feature hysteresis—nevertheless underlies stable

fluctuations in emergent aggregate optimism and output. These findings demonstrate the

applicability of our methods to further studying how diffuse and diverse topics of firms’

discussion propagate through the economy and shape business cycles.

Related Literature. The most closely related work is from a literature studying epidemi-

ological contagion in the macroeconomy (Carroll, 2001; Burnside et al., 2016; Carroll and

Wang, 2022; Jamilov et al., 2024) and the survival dynamics of competing models among

economic agents (e.g., Brock and Hommes, 1997; Molavi, Tahbaz-Salehi, and Vedolin, 2021).

Theoretically, our work presents a new framework for understanding how competing models

shape equilibrium business cycles; empirically and quantitatively, our work introduces a new

and distinct method to measure economic agents’ models, their decision relevance, and their

spread. An important insight of our analysis is that, in equilibrium, business cycles and

model choice are deeply intertwined: economic outcomes determine what models catch on,

and the popularity of different models shapes economic outcomes.

Our work relates to a large literature on belief-driven business cycles. Some studies pos-

tulate that shocks directly to aggregate beliefs cause fluctuations (e.g., Lorenzoni, 2009; An-

geletos and La’O, 2010, 2013; Angeletos, Collard, and Dellas, 2018; Christiano, Ilut, Motto,

and Rostagno, 2008; Benhabib et al., 2015; Nimark, 2014; Chahrour, Nimark, and Pitschner,

2021). Others focus on the interaction of other shocks with fixed belief differences (e.g., Ca-

ballero and Simsek, 2020; Guerreiro, 2023), the tendency of agents to over-extrapolate (e.g.,

Bordalo et al., 2021; Bianchi, Ilut, and Saijo, 2024), or the effects of slow and/or misspecified

learning (e.g., Marcet and Sargent, 1989a,b; Eusepi and Preston, 2011; Kozlowski, Veldkamp,

and Venkateswaran, 2020). Our work can be understood as studying both belief dynamics

and belief disagreement through the contagious transmission of models that are disconnected

from fundamentals, as well as providing novel evidence for this mechanism.

Our analysis finally relates to a literature studying firms’ language and outcomes (Loughran

and McDonald, 2020). As a methodological contribution, we show how to interpret textual

measurements in an equilibrium model that can be used to study counterfactuals.
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2 Model

We first describe our framework, a real business cycle model with dispersed information

(Lorenzoni, 2009; Angeletos and La’O, 2010) that we augment with contagious beliefs.

2.1 Beliefs and Fundamentals

Time is discrete, indexed by t ∈ N, and there is an exogenous macroeconomic state θt ∈ R++.

We will interpret θt as aggregate productivity and assume that it follows:

log θt = (1− ρ)µ+ ρ log θt−1 + σθνt (1)

where νt ∼ N(0, 1) is an i.i.d. shock.

Each agent uses a probability model to forecast θt. For our main analysis, we suppose

that there are two competing models that differ only in the perceived mean of productivity:

an optimistic one under which µ = µO and a pessimistic one under which µ = µP , where

µO > µP . The true distribution of the fundamental need not coincide with either model.

Firms either believe the optimistic model or the pessimistic model. Hence, each agent

i ∈ [0, 1] has a prior belief regarding the fundamental that can be described as:

N
(
[λitµO + (1− λit)µP ] (1− ρ) + ρ log θt−1, σ

2
θ

)
(2)

where λit = 1 corresponds to optimism and λit = 0 corresponds to pessimism.

In equilibrium, as we will see shortly, agents’ prior beliefs about θt will also govern their

prior beliefs about endogenous objects (e.g., GDP and wages). Thus, models by our definition

will convey multidimensional information about the economy and how it will evolve—but,

crucially for our purposes, in a way that is consistent with rational expectations equilibrium.

We focus on a setting with two models about the mean of fundamentals for parsimony.

However, our analysis extends to richer spaces of models. In Appendix B.4, we consider a

continuum of models. In Appendix B.5, we consider models of idiosyncratic fundamentals.

In Appendix B.6, we consider multiple models that differ in the mean, persistence, and

volatility of productivity. Finally, in Section 6.4, we allow optimism to be driven by a large

set of underlying and more specific topics.

2.2 Belief Dynamics

If individuals were each endowed with one unchanged model forever, ours would be a model

of heterogeneous priors in the tradition of Miller (1977) and Harrison and Kreps (1978). Our
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goal instead is to describe how models gain or lose prevalence over time. We suppose that

this can happen in two distinct and potentially complementary ways.

The first channel is contagion: models spread as a function of their prevalence. The con-

tagion hypothesis is rooted in a large social science literature studying how social interaction

affects beliefs (see Carroll and Wang, 2022, for a review). Contagion is also central to the

“Narrative Economics” of Shiller (2020), who argues for its relevance in macroeconomics:

We need to incorporate the contagion of narratives into economic theory. [. . . ]

If we do not understand the epidemics of popular narratives, we do not fully

understand changes in the economy and in economic behavior.

The second channel is association: models spread when they better describe the world.

This is the standard view in economic theories in which belief dynamics are governed by

learning (e.g., Eusepi and Preston, 2011; Molavi, 2019) or by associative memory (Kahana,

2012). Failing to account for association may lead an observer to spuriously attribute the

spread of a model to contagion: the observation that people become more optimistic when

the economy is doing well does not imply the existence of contagion.

Toward formalizing these notions, we summarize the prevalence of models by their cross-

sectional distribution in the population. In our economy with optimists and pessimists, we

need only to keep track of the fraction of optimists: Qt =
∫

[0,1]
λit di ∈ [0, 1]. We also define

Yt as aggregate output, the endogenous outcome that will govern association.

At the individual level, adherence to a model follows a Markov process. We describe

this process via a probability that optimists remain optimistic, PO, and the probability that

pessimists become optimistic, PP . Both probabilities depend on aggregate output Yt, the

fraction of optimists in the population Qt, and an aggregate model shock to how agents up-

date εt ∼ G. The first two features respectively capture associativeness and contagiousness.

The shock captures shifts in models that are unrelated to economic conditions. Hence, the

fraction of optimists evolves according to:

Qt+1 = QtPO(log Yt, Qt, εt) + (1−Qt)PP (log Yt, Qt, εt) (3)

We assume that PO and PP are increasing in their first two arguments, continuous and

almost everywhere differentiable. We do not take a stand on the details of what makes a

model contagious or associative, noting only that microfoundations based on communication

between people (Burnside et al., 2016) and retrieval of memories (Kahana, 2012) can underlie

contagion and association, respectively. Our approach will instead be to take as given PO

and PP and later empirically estimate them. In Appendix B.3, we discuss how our approach

differs from Bayesian learning.

8



2.3 Technology and Preferences

The consumption, production, and labor supply blocks of the model are standard. This

approach intentionally abstracts from many realistic frictions and forces in the economy,

consistent with our goal of understanding how contagious beliefs affect business cycles under

the most simple and standard microfoundations. It is simple to see how one could extend

our analysis to richer models and we leave that to future research.

There is a continuum of monopolistically competitive intermediate goods firms of unit

measure, indexed by i, and uniformly distributed on the interval [0, 1]. They hire labor Lit

monopsonistically at wage wit to produce a differentiated variety in quantity xit that they

sell at price pit according to the production function:

xit = θitL
α
it (4)

where α ∈ (0, 1] is the return-to-scale in production and θit is the firm’s productivity.

Models correspond to beliefs about the common component of firms’ productivity. Con-

cretely, firm productivity θit is comprised of a common, aggregate component θt, an idiosyn-

cratic time-invariant component γi, and an idiosyncratic time-varying component θ̃it:

θit = θ̃itγiθt (5)

Firms know that log γi ∼ N(µγ, σ
2
γ), know their own value of γi, and believe that log θ̃it ∼

N(0, σ2
θ̃
) and independently and identically distributed (i.i.d.) across firms and time. We

assume that firms can observe all previous macroeconomic outcomes. Firms receive idiosyn-

cratic Gaussian signals about log θt with noise eit ∼ N(0, σ2
e) that is i.i.d. across firms and

time: sit = log θt + eit. We define the signal-to-noise ratio as κ = 1/(1 + σ2
e

σ2
θ
), which indexes

how much firms update their beliefs about aggregate productivity upon receiving the signal

sit. Importantly, by allowing for these signals, our model nests the case in which beliefs are

fully driven by models (κ = 0) as well as the case in which models have no bearing on the

posterior beliefs that are relevant for decisions (κ = 1).

A final goods firm competitively produces aggregate output Yt by using a constant elas-

ticity of substitution (CES) production function:

Yt =

(∫
[0,1]

x
ε−1
ε

it di

) ε
ε−1

(6)

where ε > 1 is the elasticity of substitution between varieties.

A representative household consumes final goods Ct and supplies labor {Lit}i∈[0,1] to the
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intermediate goods firms with isoelastic, separable, expected discounted utility preferences:

U
(
{Ct, {Lit}i∈[0,1]}t∈N

)
= E0

[
∞∑
t=0

βt

(
C1−γ
t

1− γ −
∫

[0,1]

L1+ψ
it

1 + ψ
di

)]
(7)

where household expectations are arbitrary (and potentially correct), γ ∈ R+ indexes the

size of income effects in the household’s supply of labor, and ψ ∈ R+ is the inverse Frisch

labor supply elasticity to each firm, and β ∈ (0, 1) is the household’s discount factor.

Finally, we define the composite parameter:

ω =
1
ε
− γ

1+ψ−α
α

+ 1
ε

(8)

which indexes the strength of strategic complementarity. So that complementarity is positive

but not so extreme that the model features multiple equilibria, we assume that ω ∈ [0, 1).

This requires that income effects in labor supply do not overwhelm aggregate demand exter-

nalities and that these externalities are not too large. This condition holds, as we will later

see, under standard calibrations of the relevant parameters.

2.4 Equilibrium

We study a rational expectations equilibrium. All agents optimize, firms form their expecta-

tions by combining all available information with their models, models spread dynamically

as described earlier, and all markets clear.

Definition 1 (Model-Based Rational Expectations Equilibrium). An equilibrium is a path:

E =
{
Yt, Ct, Qt, θt, εt, {Lit, xit, pit, wit, λit, sit, θ̃it}i∈[0,1]

}
t∈N

(9)

1. Models weights λit and the fraction of optimists Qt follow a Markov process consistent

with Equation 3.

2. Firms’ production xit maximizes expected profits under the household’s stochastic dis-

count factor given their model weights λit, signals sit, and knowledge of E.

3. Consumption Ct and labor supply {Lit}i∈[0,1] are consistent with household expected

utility maximization.

4. All markets clear.

As we will shortly see, in a model-based REE, agents’ models endogenously take on the

role of forecasting equilibrium outcomes and thus embed this multi-dimensional information.
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3 Macroeconomic Dynamics with Contagious Models

We now study the equilibrium dynamics of models and output in our framework. We find

that models induce non-fundamental fluctuations in the economy and have the potential to

generate endogenous persistence and hysteresis. Moreover, we show how to use firm-level

panel data to identify the model’s parameters and test its predictions.

3.1 Characterizing Equilibrium Dynamics

We solve for equilibrium by first characterizing the choices of intermediate goods firms,

the key agents whose models affect hiring and production. These firms maximize expected

profits priced by the representative household, or Eit[C−γt (pitxit − witLit)]. Each firm takes

as given the demand generated by the competitive final goods firm, pit = Y
1
ε
t x
− 1
ε

it . Since

firms are monopsonists, they internalize movements in the wage that are pinned down by

the household’s labor supply curve Lψit = witC
−γ
t . Finally, the firm’s labor requirement to

produce xit units of output is Lit = θ
− 1
α

it x
1
α
it . Putting these pieces together (along with market

clearing Ct = Yt), we obtain that each intermediate goods firm solves:

max
xit

Eit
[
Y −γt

(
Y

1
ε
t x

1− 1
ε

it − Y γ
t θ
− 1+ψ

α
it x

1+ψ
α

it

)]
(10)

Taking the first-order condition of this program, we have that optimal production solves:(
1− 1

ε

)
Eit
[
Y

1
ε
−γ

t

]
x
− 1
ε

it =
1 + ψ

α
Eit
[
θ
− 1+ψ

α
it

]
x

1+ψ−α
α

it (11)

where the left-hand side is the marginal expected revenue from expanding production and the

right-hand side is the marginal expected cost of this expansion. Models affect the expected

marginal costs of production, via the expectation of productivity, and the expected marginal

benefits of production, via the expectation of aggregate output (which itself matters due

to aggregate demand externalities, asset pricing forces, and wage pressure). In equilibrium,

these beliefs about output will also depend on the models held by other firms.

Substituting this into the final goods production function, any equilibrium conditional

on any process of model evolution solves the following functional fixed-point equation:

log Yt =
ε

ε− 1
logEt

[
exp

{
ε−1
ε

1+ψ−α
α

+ 1
ε

(
log

(
1− 1

ε
1+ψ
α

)

− logEit
[
exp

{
−1 + ψ

α
log θit

}]
+ logEit

[
exp

{(
1

ε
− γ
)

log Yt

}])}] (12)
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where the outer expectation operator integrates over productivity shocks (θ̃it, γi), model

loadings λit, and signals sit.

By employing a functional guess-and-verify argument, we characterize equilibrium output

and how it depends on both productivity and the prevalence of optimism:

Theorem 1 (Equilibrium Characterization). There exists a unique quasi-loglinear equilib-

rium:

log Y (log θt, log θt−1, Qt) = a0 + a1 log θt + a2 log θt−1 + f(Qt) (13)

Moreover, in the unique quasi-loglinear equilibrium, we have that:

f(Qt) =
1

1− ω
ε

ε− 1
log

(
1 +Qt

[
exp

{
ε− 1

ε
αδOP

}
− 1

])
(14)

where δOP is given by:

δOP =
1

α

1+ψ
α

1+ψ−α
α

+ 1
ε

(
1 +

κω

1− κω

)
(1− κ)(1− ρ)(µO − µP ) (15)

Proof. See Appendix A.1, which also provides the formulas for a0, a1 > 0, and a2 > 0.

Remark 1. Theorem 1 establishes uniqueness within the quasi-loglinear class. As best

replies and aggregation are non-linear and the space of fundamentals is not compact, one

cannot use classical arguments based on Blackwell’s sufficient conditions to ensure that the

fixed point operator in Equation 12 is a contraction and thereby establish uniqueness in a

larger class. Of course, studying an economy with an unbounded support for productivity

is merely a mathematically convenient approximation: productivity is certainly bounded,

perhaps for a very large bound. In Appendix A.1, we show that there is a unique equilib-

rium when fundamentals are restricted to lie in a compact set (Lemma 1). Moreover, the

claimed quasi-loglinear equilibrium is an ε-equilibrium for any ε > 0 for some sufficiently

large support for fundamentals (Lemma 2). Hence, the quasi-loglinear equilibrium is the

limit of the unique equilibrium with bounded fundamentals as the bound becomes large.

This refinement may be of independent interest and could be used in dispersed information

economies in which the uniqueness of equilibrium is an open question outside of the log-linear

class, such as those studied by Angeletos and La’O (2013) and Benhabib et al. (2015).

3.2 The Static Effects of Optimism on Output

We now unpack the economics of Theorem 1 to study how models drive non-fundamental

fluctuations. We also study the extent to which information can limit the effects of models.

12



The Effect of Optimism on Output. Optimism affects output in a way that is separable

from fundamentals via the function f . This function is non-linear because firms’ heteroge-

neous priors induce heterogeneity in production conditional on productivity and hence also

misallocation. Notwithstanding this non-linearity, it turns out that it is useful to summarize

the role of optimism by computing the difference in aggregate output when everyone in the

economy is optimistic versus when everyone in the economy is pessimistic:

∆t ≡ log Y (log θt, log θt−1, 1)− log Y (log θt, log θt−1, 0) (16)

By Theorem 1, we observe that ∆t = ∆ = f(1)− f(0), which has an intuitive structure:

Corollary 1 (The Effect of Optimism on Output). The effect on aggregate output of moving

from a fully pessimistic economy to a fully optimistic economy, ∆t, is invariant to time and

the state of the economy and is given by:

∆ =
1

1− ω × α× δ
OP (17)

In this expression, as we will later justify formally, δOP is the partial equilibrium effect of

a firm’s optimism on the amount of labor the firm hires when we hold fixed the behavior of

all other firms and fundamentals. To find the general equilibrium effect of this on aggregate

output, Theorem 1 implies that we can first convert the effect of hiring into the output effect

via the returns-to-scale parameter α and then apply a multiplier 1
1−ω . This multiplier is large

when strategic complementarities in production arising from aggregate demand externalities

are much larger than strategic substitutability that arises from income effects in household

labor supply. This multiplier captures the intuitive idea that even a pessimistic firm will

produce more if a large fraction of other firms is optimistic, as this optimism increases

aggregate demand.

The Power of the Truth. This result formalizes and provides nuance for Shiller’s (2020)

argument that “the truth is not enough to stop false narratives.” Specifically, let us define

the power of the truth as |∂∆
∂κ
|. This measures how the effect of optimism on firms’ hiring

and aggregate output changes as they receive more precise information about productivity.

Corollary 2. The power of the truth |∂∆
∂κ
| is positive and increasing in the precision of

private information κ. The power of truth is strictly increasing in the precision of private

information if and only if strategic complementarity is strictly positive (ω > 0).

Information is least effective at stopping models exactly when models are at their most

powerful. Conversely, when private information is precise and models are weak, the marginal

effects of better private information are strong.

13



This result depends critically on the presence of general equilibrium interactions and

strategic complementarity. When there is no strategic complementarity (ω = 0), the power

of the truth is constant: ∆ ∝ (1−κ)(µO−µP ), where the constant of proportionality does not

depend on κ. In this case, the power of the truth is |∂∆
∂κ
| ∝ (µO−µP ), which depends on the

differences in beliefs across models but not the precision of agents’ information. Intuitively,

providing more information simply scales down how much agents rely on their models. When

there is strategic complementarity (ω > 0), increasing the precision of private information

now has a second effect: agents know that other agents will be responding more to their

signals and relying less on their priors. Because agents want to produce more when others

produce more, agents’ models about fundamentals become paradoxically more important as

they now use models more aggressively in forecasting the actions that others will take. This

effect dampens the ability of information to stop false models and it does so by more exactly

when information is weakest and models are strongest.

3.3 The Dynamics of Models and Output

We now use the characterization of Theorem 1 to describe the economy’s dynamics:

Corollary 3 (Model Dynamics). In the unique quasi-loglinear equilibrium, the fraction of

optimists Qt evolves according to Qt+1 = T (Qt, θt, θt−1, εt), where

T (Qt, θt, θt−1, εt) = QtPO(a0 + a1 log θt + a2 log θt−1 + f(Qt), Qt, εt)+

(1−Qt)PP (a0 + a1 log θt + a2 log θt−1 + f(Qt), Qt, εt)
(18)

This result has two important implications. First, models can be self-propagating. For-

mally, holding fixed the fundamental and optimism shocks (θt, θt−1, εt), the spread of models

is shaped by individuals’ proclivity to hold onto their current model, social contagiousness,

and associativeness, as embodied in PO and PP . Second, models can generate persistent

effects of one-time fundamental shocks: a one-time productivity shock today can increase

aggregate output and thereby increase future optimism.

Steady-States and Hysteresis. To study these ideas, we first isolate the propagation

of models without shocks. Formally, let Tθ(Q) = T (Q, θ, θ, 0) denote the transition map

for aggregate optimism with fixed productivity and no optimism shock. We say that a

level of optimism Q∗θ is a deterministic steady state for the level of productivity θ if it is a

fixed point of the corresponding map, Tθ(Q
∗
θ) = Q∗θ. The following result establishes that a

deterministic steady state always exists and provides necessary and sufficient conditions for

extreme optimism and pessimism to be (stable) steady states.
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Theorem 2 (Steady State Multiplicity and Stability). The following statements are true:

1. There exists a deterministic steady-state level of optimism for every θ ∈ Θ.

2. There exist thresholds θP and θO such that: Q = 0 is a deterministic steady state for

θ if and only if θ ≤ θP and Q = 1 is a deterministic steady state for θ if and only if

θ ≥ θO. Moreover, these thresholds are given by:

θP = exp

{
P−1
P (0; 0)− a0

a1 + a2

}
and θO = exp

{
P−1
O (1; 1)− a0 −∆

a1 + a2

}
(19)

where P−1
P (x;Q) = sup{Y : PP (Y,Q, 0) = x}, P−1

O (x;Q) = inf{Y : PO(Y,Q, 0) = x}.
3. Extreme pessimism is stable if θ < θP and PO(P−1

P (0; 0), 0, 0) < 1 and extreme optimism

is stable if θ > θO and PP (P−1
O (1; 1), 1, 0) > 0.

Proof. See Appendix A.3.

If extreme optimism or extreme pessimism is a stable steady state, then the optimistic

(or pessimistic) model has a tendency to “go viral” and fully infect the entire population.

The conditions under which this occurs can be checked with only a few parameters, which

we will later be able to discipline empirically: the responsiveness of output to productivity

(a1, a2), the impact of all agents being optimistic on output ∆, the highest level of output

such that all pessimists remain pessimistic when everyone is a pessimist P−1
P (0; 0), and the

lowest level of output such that all optimists remain optimistic when all other agents are

optimists P−1
O (1; 1).

Of particular interest is the case in which, for fixed values of other parameters and

fundamentals, either extreme optimism or extreme pessimism could go viral depending on

initial conditions. This can induce fully history-dependent, long-run changes in output, a

property which we refer to as hysteresis. The following corollary characterizes exactly when

this can happen:

Corollary 4 (Hysteresis). Extreme optimism and pessimism are simultaneously determin-

istic steady states for θ if and only if θ ∈ [θO, θP ], which is non-empty if and only if

P−1
O (1; 1)− P−1

P (0; 0) ≤ ∆ (20)

Intuitively, this condition is more likely to hold if the optimistic model has a large effect

on output (high ∆), if a relatively low output can be consistent with self-fulfilling optimism

(low P−1
O (1; 1)), or if a relatively high output can be consistent with self-fulfilling pessimism

(high P−1
P (0; 0)).
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3.4 Hysteresis, Endogenous Persistence, and Boom-Bust Cycles

To more concretely illustrate the features of contagious business cycles and, later, enable

us to take the model to the data, we now introduce a parametric family of model updating

rules. The linear-associative-contagious (LAC) model for updating rules is:

PO(log Y,Q, ε) =
[u

2
+ r log Y + sQ+ ε

]1

0

PP (log Y,Q, ε) =
[
−u

2
+ r log Y + sQ+ ε

]1

0

(21)

where [z]10 = max{min{z, 1}, 0} and ε is i.i.d. N(0, σ2
ε). The parameter u ≥ 0 captures

stubbornness, or all agents’ proclivity not to change models. The parameter r ≥ 0 captures

associativeness, or the extent to which agents associate high output with the optimistic

model. The parameter s ≥ 0 captures contagiousness, or the direct effect of peers’ models

on one’s own. Finally, the aggregate shock allows models to fluctuate autonomously.

We now illustrate three qualitative properties of contagious business cycles:

1. Hysteresis and the criticality threshold : despite equilibrium uniqueness, there can be

multiple steady states and a critical level of model adoption away from which the

economy diverges.

2. Endogenous persistence of output : stubbornness, associativeness, and contagiousness

generate state-dependent and size-dependent persistence of one-time shocks.

3. Boom-bust cycles : even when hit by i.i.d. stochastic shocks, the economy features a

tendency toward boom-bust cycles.

In Appendix B.1, we formalize these properties of shock responses in a larger class of non-

parametric updating rules. Below, for purposes of simplest exposition, we describe them

using examples from the LAC class.

Hysteresis and the Criticality Threshold. Figure 1 visualizes the transition map for

two example calibrations of the updating rule, fixing the state θ and the calibration of other

parameters. In panel (a), stubbornness, contagiousness, and associativeness are relatively

low. The transition map Tθ crosses the 45-degree line once, from above. Therefore, the

interior steady state denoted by Q̂θ is stable, and optimism tends to converge to this level if

perturbed away from it. For this reason, we refer to this as a case that admits “fluctuations”

if hit by shocks. In panel (b), stubbornness, contagiousness, and associativeness are relatively

high. The transition map Tθ intersects the 45-degree line three times: twice at the extremes of

Q = 0 and Q = 1 and once from below at an interior level Q̂θ. Paths for Q that start slightly

to the left or right of Q̂θ converge, respectively, to the stable points of Q = 0 or Q = 1. In
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Figure 1: Fluctuations vs. Hysteresis in the Linear-Associative-Contagious Model
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(a): “Fluctuations”
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(b): “Hysteresis”

Notes: In each subfigure, the solid line is an example transition map Tθ, the dashed line is the
45-degree line, the dotted vertical line indicates the interior steady state Q̂θ, and the red arrows
indicate the dynamics. Both correspond to the linear-associative-contagious model with different
calibrations for the underlying parameters. In panel (a) (“fluctuations”), the condition for extremal
multiplicity (Equation 22) does not hold. In panel (b) (“hysteresis”), the condition does hold, and
Q = 0 and Q = 1 are stable steady states.

this sense, dynamics of optimism display hysteresis: holding fixed fundamentals, the long-run

behavior of the economy depends on initial conditions. Lemma 3 in the Appendix formalizes

these ideas by showing exactly when Q̂θ is on the boundary of two basins of attraction for,

respectively, extreme pessimism and extreme optimism.

We can analytically compute the condition in Corollary 4, which determines when ex-

treme optimism and pessimism are both stable steady states.2 Thus, extreme optimism and

pessimism are steady states if and only if:

M = u+ s+ r∆− 1 ≥ 0 (22)

which is to say that stubbornness, associativeness, contagiousness, and the equilibrium im-

pact of optimism on output are sufficiently large. This expression clarifies that strong static

complementarities, which would manifest in high ∆, are sufficient but not necessary for ex-

tremal multiplicity. In particular, stubbornness and contagiousness contribute dynamic com-

plementarity that can also induce extremal multiplicity. Thus, the parameter M , which in-

corporates both static and dynamic complementarity, is the correct gauge for the “strength”

of models to generate hysteresis.

Moreover, as suggested by panel (b) of Figure 1, the model with stable extremal steady

2In particular, P−1O (1; 1) solves 1 = u
2 + rP−1O (1; 1) + s, so P−1O (1; 1) = 1

r − u
2r − s

r ; P−1P (0; 0) solves

0 = −u2 + rP−1P (0; 0), so P−1P (0; 0) = u
2r .
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states has an unstable, intermediate steady state Q̂θ ∈ (0, 1) that solves Q̂θ = Tθ(Q̂θ), or

Q̂θ =
u

2
(2Q̂θ − 1) + sQ̂θ + r(a0 + (a1 + a2) log θ + f(Q̂θ)) (23)

We refer to this value of optimism as the criticality threshold because it separates regions

of the state space that are attracted to extreme optimism versus extreme pessimism. Under

the approximation that f(Q) ≈ ∆Q, which we later find to be quantitatively accurate,

Q̂θ ≈
u
2
− r(a0 + (a1 + a2) log θ)

M
(24)

Hence, a higher contagiousness (s) or static economic impact of optimism (∆) reduces Q̂θ,

or equivalently decreases the lower bound of initial optimism that is consistent with the

optimistic model eventually going viral.

Endogenous Persistence. We now study how the economy responds to shocks. Figure

2 illustrates how the economy responds to shocks under a “fluctuations” versus “hysteresis”

calibration of the model. In both calibrations, productivity shocks are perfectly transitory.

The blue and orange lines of each plot respectively illustrate smaller and larger one-time

productivity shocks at t = 0. In both cases, because of positive associativeness, these

correspond to one-time upward shifts in the transition maps T (Q) (panel (a)). The dots and

dashed lines in panel (a) trace out the dynamic response of optimism to each shock using the

transition map. Panels (b) and (c) illustrate the impulse responses of optimism and output.

In the fluctuations case (row 1), persistence of models creates endogenous persistence

in the economic boom. Because of positive associativeness (r > 0), stubbornness (u > 0),

and contagiousness (s > 0), optimism remains elevated for several periods before smoothly

converging back to the steady state. At t = 0, output is elevated above its steady-state

value only because of the productivity shock; for t ≥ 1, output is elevated because of the

persistent increase in optimism, even though productivity has returned to its steady-state

value. The large shock (orange) leads to a larger and more persistent boom than the small

shock (blue).

In the hysteresis case (row 2), the small shock leads to a highly persistent boom, whereas

the large shock leads to a regime shift. This discontinuity of shock responses as a function of

shock size emerges because large shocks can push the economy above the unstable interior

steady state (panel (a)). Intuitively, the large shock seeds enough optimism for the optimistic

model to “go viral.” This also induces a non-monotone response of output (panel (c)): while

the direct effect of productivity disappears after one period, the effect of viral optimism

grows over time.
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Figure 2: Endogenous Persistence in Shock Responses

0.0 0.5 1.0

Qt

0.0

0.5

1.0

Q
t+

1

E
x
am

p
le

1:
”F

lu
ct

u
at

io
n

s”

(a) T (Q)

0 5

t

0.0

0.2

0.4

(b) Qt −Qss

0 5

t

0.0

0.1

0.2

(c) log Yt − log Yss

0 1

Qt

0.0

0.5

1.0

Q
t+

1

E
x
am

p
le

2:
”H

y
st

er
es

is
”

0 5

t

0.0

0.5

1.0

0 5

t

0.0

0.1

0.2

Notes: This figure illustrates the response of the economy to transitory productivity shocks under
two different model calibrations. The top row corresponds to a “fluctuations” calibration and the
bottom row corresponds to a “hysteresis” calibration, as defined in the main text. The orange lines
correspond to a larger productivity shock and the blue lines correspond to a smaller productivity
shock. Column (a) shows the transition map for aggregate optimism (black), its perturbations
under each shock (colors), and the paths of optimism (dots and dashed lines). Column (b) shows
the impulse response of optimism relative to the interior steady-state value (top row) and relative
to extreme pessimism (bottom row). Column (c) shows the impulse response of log output relative
to the respective steady-state values.

In sum, both regimes feature endogenous persistence of output even in response to one-

time shocks. In the hysteresis regime, there is the possibility also of permanent economic

effects of temporary shocks. Propositions 1 and 2 in the Appendix formalize these properties,

and moreover characterize when endogenous persistence is large enough to generate “hump-

shaped” impulse response functions of output in response to perfectly transitory shocks.

Boom-Bust Cycles. We finally study how these different cases map to time-series proper-

ties of the macroeconomy. To visualize this, we simulate from “fluctuations” and “hysteresis”

calibrations of the model for 100 periods in Figure 3. Productivity shocks are common across

the two simulations and there are no direct shocks to model evolution (σε = 0). In both

simulations, output is persistent despite the lack of persistent driving shocks. This arises be-

cause of persistent variation in optimism. In the fluctuations case, optimism (and therefore

output) is mean-reverting. In the hysteresis case, optimism swings between extremes at low
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Figure 3: Simulated Paths of the Economy under “Fluctuations” vs. “Hysteresis”
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Notes: Each panel corresponds to a simulated time series of the model, with identical time paths of
i.i.d. productivity shocks but different calibrations. The condition for extremal multiplicity (Equa-
tion 22) does not hold in example 1 (“Fluctuations”) but does hold in example 2 (“Hysteresis”).

frequencies. This induces sudden but persistent “booms and busts.” Proposition 3 in the

Appendix formalizes this and provides analytical bounds on the period of boom-bust cycles.

3.5 Additional Results and Extensions

Persistent Idiosyncratic Shocks and Model Updating. In Appendix B.5, we show

that a model in which models concern the probability distribution of idiosyncratic revenue

total factor productivity (TFPR) yields the same predictions as our main model. Thus, as

long as there are aggregate model dynamics, models need describe neither the macroeconomy

nor physical productivity per se. This is an important motivation for our measurement

strategy, which will not distinguish between optimism about micro versus macro conditions.

Multi-dimensional Models. In Appendix B.6, we generalize the model to allow for arbi-

trarily many models regarding the mean, persistence, and volatility of fundamentals, which

is essentially exhaustive within the Gaussian class. In Appendix B.4, we generalize our anal-

ysis to feature a continuum of models. In each case, we generalize our results to characterize

equilibrium output and model evolution.

Bayesian Updating. An important model that is ruled out by our conditions on the

updating rule is one in which firms observe aggregate variables log Yt and Qt and use Bayes’

rule to update their beliefs over models. As we formalize in Appendix B.3, this “Bayesian

benchmark” contradicts the dependence of firms’ updating on Qt and εt conditional on log Yt

(respectively, contagiousness and shocks). Moreover, this “Bayesian benchmark” predicts
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that agents converge to holding the better-fitting empirical model exponentially quickly.

Later, we will show that such a prediction is at odds with our finding of cyclical dynamics

for aggregate optimism (Figure A1). However, in principle, richer Bayesian models that are

consistent with our empirical results might be nested by the model updating process.

Contrarianism, Endogenous Cycles, and Chaos. While this model generates non-

fundamental fluctuations, it cannot generate fully endogenous cycles and chaotic dynamics.

In Appendix B.8, we extend this model to allow for contrarianism and the possibility that

pessimists may be more likely to become optimists than optimists are to remain optimists.

Allowing for these features generates the possibility of endogenous cycles of arbitrary period

and topological chaos (sensitivity to arbitrarily small changes in initial conditions). This

model also admits a structural test for the presence of cycles and chaos that we bring directly

to the data; we reject at the 95% confidence level that either cycles or chaos obtain.

Welfare Implications. In Appendix B.2, we study the normative implications of opti-

mism and provide conditions under which its presence is welfare improving, despite its being

misspecified. Intuitively, optimism acts as if it were an ad valorem price subsidy for firms,

which induces firms to hire more and can undo distortions caused by market power.

3.6 From Theory to Measurement

We have shown that the theoretical properties of contagious business cycles hinge on: (1)

the effect of optimism on hiring, (2) agents’ updating rules, (3) the persistence and volatility

of exogenous shocks, and (4) the extent of private information. We now show how to iden-

tify these objects conditional on calibrating four standard macroeconomic production and

preference parameters. This will form the basis for our empirical strategy and quantification.

Step I: Identification of The Effect of Optimism. Theorem 1 implies that f , the

effect of optimism on output in the unique quasi-loglinear equilibrium, is identified given

knowledge of both δOP and the standard macroeconomic parameters (α, ε, γ, ψ). Moreover,

δOP can be recovered via a simple regression of firms’ hiring on their optimism:

Corollary 5 (Firm Hiring Regression). In the unique quasi-loglinear equilibrium

∆ logLit = γi + χt + τ1 log θit + τ2 logLi,t−1 + δOPλit + ζit (25)

where χt = c1 log θt+c2 log θt−1 +c3f(Qt) for some constants c1, c2, and c3, and ζit is an i.i.d.

normal random variable with zero mean. Moreover, conditional on (α, ε, γ, ψ), δOP uniquely

identifies f , the equilibrium effect of optimism on output.

Proof. See Appendix A.4.
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The time fixed-effect χt absorbs two aggregate equilibrium forces: the general-equilibrium

effect of optimism on hiring, c3f(Qt), and the effects of aggregate productivity on aggregate

output, c1 log θt + c2 log θt−1. Without the time fixed effect, the regression would produce

a biased estimate for δOP because of the correlation of optimism with aggregate economic

fundamentals. This underscores the necessity of combining cross-sectional variation and

a structural model for general-equilibrium interaction to identify the effect of models on

economic outcomes.

We also note that our argument for identifying the partial-equilibrium effect of optimism

on hiring and aggregating these effects via the model also applies if models concern firms’

idiosyncratic productivity (Appendix B.5). Thus, our empirical and quantitative analysis

is not sensitive to this modeling choice. As we explain formally in the Appendix, only the

exact identification of the underlying parameters κ and µO − µP would change, while the

outcome-relevant objects δOP and f remain the same. This observation will assist us when

mapping to the data.

Step II: Identification of Updating Rules. In the linear-associative-contagious (LAC)

model for updating rules, we can identify u, r, and s by estimating a linear probability

model for the evolution of optimism at the firm level. The residual term in this regression

corresponds to idiosyncratic shocks to updating (since the model is probabilistic) plus the

aggregate shock ε.

Step III: Identification of Private Information and the Shock Processes. To ob-

tain the law of motion of aggregate output, we require the four parameters that govern the

persistence of productivity ρ, the volatility of productivity innovations σθ, the signal-to-noise

ratio for productivity κ, and the volatility of optimism shocks σε. The key to our identi-

fication strategy for the first three parameters is the following observation: after removing

the non-fundamental component of output identified by Step I, the fundamental component

follows an ARMA(1,1) process.

Corollary 6 (Fundamental Output is an ARMA(1,1)). In the unique quasi-loglinear equi-

librium, the fundamental component of output, log Y f
t = log Yt − f(Qt) − a0, follows an

ARMA(1,1) process:

log Y f
t = ρ log Y f

t−1 + a1σθνt + a2σθνt−1 (26)

where (a0, a1, a2) are the coefficients characterized in Theorem 1 and νt is i.i.d. N(0, 1).

The coefficients of this ARMA(1,1) process impose three restrictions on the three param-

eters (ρ, σθ, κ). Conditional on all other parameters, the scaling of the optimism shock σε is

pinned down by the time-series variance of aggregate optimism Var[Qt].
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4 Data and Measurement

To implement these steps and take the model to the data, we construct a panel dataset on

firms’ sentiment and decisions.

4.1 Data

Text. We measure proxies for firms’ models using textual data. Our main sources of

data are Forms 10-K, annual reports submitted to the Securities and Exchange Commission

(SEC) by each publicly traded firm in the US. These forms provide “a detailed picture

of a company’s business, the risks it faces, and the operating and financial results of the

fiscal year” (SEC, 2011). Moreover, relevant to our purposes, “company management also

discusses its perspective on the business results and what is driving them” (SEC, 2011). We

download all SEC Forms 10-K from the SEC Edgar database from 1995 to 2018. The three

key steps are pre-processing the raw text data to isolate English-language words, associating

words with their common roots via lemmatization, and fitting a bigram model that groups

together co-occurring two-word phrases (see Appendix C.1 for details). Our final sample

consists of 100,936 firm-by-year observations from 1995 to 2018.

As an alternative source of text data, we use public firms’ quarterly sales and earnings

conference calls. Our initial sample consists of 158,810 documents from 2002 to 2014. We

collapse the data to 25,589 firm-by-fiscal-year observations (see Appendix C.2 for details).

Fundamentals and Choices. We measure firm fundamentals and choices using Compu-

stat Annual Fundamentals from 1995 to 2018. This dataset includes information from firms’

financial statements on employment, sales, input expenses, capital, and other financial vari-

ables. We apply standard selection criteria to screen out firms that are very small, report

incomplete information, or were likely involved in an acquisition. As is standard, we also

drop firms in the financial and utilities sectors due to their markedly different production

and/or market structure. More details about our sample selection are in Appendix D.1.

We organize firms into 44 industries, which are defined at the NAICS 2-digit level, but for

Manufacturing (31-33) and Information (51), which we split into the 3-digit level.

Manager and Analyst Beliefs. We collect data from the International Brokers’ Estimate

System (IBES) on firm-level quantitative forecasts. Specifically, we use the IBES Guidance

dataset to measure management’s forecasts of sales and capital expenditures, which IBES

records from press releases or transcripts of corporate events. We use the IBES Estimates

dataset to measure the median forecast of equity analysts, focusing on the long-term growth
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(LTG) expectations of earnings over three to five years as in Bordalo, Gennaioli, La Porta,

O’Brien, and Shleifer (2024).

4.2 Recovering Optimism from Language

Inspired by the linguistic analysis in Shiller’s (2020) “Narrative Economics” and the estab-

lished literature using textual data to understand the attitudes of firms, we measure firms’

models using their language. In particular, to map to our model notion of optimism and

pessimism, we use the standard and widely used sentiment-scoring approach of Loughran

and McDonald (2011). These authors construct dictionaries of positive and negative words

suitable for financial documents, in which certain words (e.g., the leading example “liabil-

ity”) have different definitions and connotations than they do in common (non-financial)

English.3 We calculate positive and negative sentiment as:

posit =
∑
w∈WP

tf(w)it negit =
∑
w∈WN

tf(w)it (27)

whereWP is the set of positive words,WN is the set of negative words, and tf(w)it is the term

frequency of all bigrams including word w in the time-t 10-K of firm i.4 We then construct

a one-dimensional measure of net sentiment, sentimentit, by computing the across-sample z-

scores of both positive and negative sentiment and taking their difference. Finally, we define

a firm i as being optimistic at time t if its sentiment is above the entire-sample median:

optit = I [sentimentit ≥ med (sentimentit)] (28)

Aggregating this measure across firms, we find that aggregate optimism is persistent, with

an autocorrelation of 0.75, and cyclical, with a correlation of -0.37 with the contemporaneous

level of unemployment (see Figure A1). Both features are to be expected in our model.

The former is a result of stubbornness, contagiousness, associativeness, and autocorrelation

of fundamentals. The latter could reflect either direction of causality: current conditions

could shape the adoption of models, or models might affect economic outcomes. Because

the time series evidence cannot distinguish among these different explanations, we will use

cross-sectional variation in optimism to isolate its effects.

Discussion of Alternative Measures. We employ the bag-of-words approach developed

by Loughran and McDonald (2011) because it is simple and well validated in existing work.

3Loughran and McDonald (2011) generate the dictionaries based on human inspection of the most common
words in the 10-Ks and their usage in context. We describe more details of our methods in Appendix C.3.

4For reference, we print the 20 most common words in each set in Table A1.
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Of course, however, one could use other measures of sentiment. As our micro-to-macro

approach is modular, it would apply to any such alternative measure. This notwithstanding,

we emphasize the transparency and reproducibility of the bag-of-words approach over black-

box alternatives (such as large language models) and also highlight that it is not clear that

more complex methods yield superior performance (see Hassan et al., 2024).

Measuring optimism is sufficient for describing firms’ prior beliefs in our model, as there is

only one dimension of fundamental uncertainty. But this strategy abstracts from the richer

details of what firms discuss. We revisit this point and describe richer natural-language-

processing strategies to measure (and interpret) more specific topics in Section 6.4.

5 Empirical Results

We now use our micro data to estimate how optimism affects decisions and spreads. In the

process, we apply tests to distinguish whether optimism arises from non-fundamental beliefs

(as in our model) or news about future fundamentals.

5.1 Optimism Drives Hiring

We first estimate the relationship between optimism in language and hiring. The estimating

equation is derived in Corollary 5. Specifically, we estimate the following firm-by-fiscal-year

model:

∆ logLit = δOPoptit + γi + χj(i),t + τ ′Xit + εit (29)

The outcome variable is the log difference of the firm’s employment across fiscal years (“hir-

ing”) and the main regressor, optit, is the binary indicator for optimism whose construction

is described in Section 4. We control for firm and industry-by-time fixed effects to sweep

out fixed differences across firms and non-parametric trends and cycles within industries.

We include a suite of firm-level time-varying controls Xit including current and past TFP,

lagged labor, and financial variables.5 Viewed through the lens of the model, the estimated

effect δOP combines two margins: the effect of optimism on beliefs and the effect of beliefs

on input choices. We could obtain a null result of δOP = 0 if optimism in language has no

influence on firms’ choices over and above other measured fundamentals.

We find that optimistic firms hire more than pessimistic firms holding fixed other observed

fundamentals (Table 1). We first estimate the model with no additional controls other than

fixed effects and estimate δ̂OP = 0.0355 with a standard error of 0.0030 (column 1). In column

5To measure total factor productivity, we estimate a constant-returns-to-scale, Cobb-Douglas, two-factor
production function in materials and capital, for each industry. More details are provided in Appendix D.2.
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Table 1: Optimism Predicts Hiring

(1) (2) (3) (4) (5)
Outcome is

∆ logLit ∆ logLi,t+1

optit 0.0355 0.0305 0.0250 0.0322 0.0216
(0.0030) (0.0030) (0.0032) (0.0028) (0.0037)

Firm FE X X X X
Industry-by-time FE X X X X X
Lag labor X X X X
Current and lag TFP X X X X
Log Book to Market X
Stock Return X
Leverage X
N 71,161 39,298 33,589 40,580 38,402
R2 0.259 0.401 0.419 0.142 0.398

Notes: For columns 1-4, the regression model is Equation 29 and the outcome is the change in
firms’ log employment from year t− 1 to t. The main regressor is a binary indicator for optimism,
defined in Section 4.2. In column 5, the regression model is Equation 30, the outcome is the log
change in firms’ employment from year t to t + 1, and control variables are dated t + 1. In all
specifications, we trim the 1% and 99% tails of the outcome variable. Standard errors are two-way
clustered by firm ID and industry-year.

2, we add controls for current and lagged TFP, and lagged labor (log θ̂it, log θ̂i,t−1, logLi,t−1).

These controls proxy both for time-varying firm fundamentals and, to first order, adjustment

costs.6 Our point estimate δ̂OP = 0.0305 (SE: 0.0030) is quantitatively comparable to our

uncontrolled estimate. To formalize this, in Appendix E.1 we report the robustness of our

estimate to selection on unobservables using the method of Oster (2019). We find that our

finding of a positive effect of optimism on hiring is robust by the benchmark suggested by

Oster (2019) (see Table A2).

In column 3, we add measures of firms’ financial characteristics, the (log) book-to-market

ratio, last fiscal year’s log stock return (inclusive of dividends), and leverage (total debt over

total assets). These controls proxy for Tobin’s q and firm-level financial frictions, features

absent from our model but potentially relevant in practice. These controls are conservative

in that they may absorb variation in both omitted firm fundamentals and optimism itself.

The point estimate remains positive and quantitatively similar. In column 4, we estimate

a specification with the controls from column 2 but no firm fixed effects to guard against

6To evaluate robustness to richer adjustment dynamics, in Table A3, we control for up to three lags of
productivity and labor and our financial controls and continue to find a significant impact of optimism on
hiring.
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small-sample bias from strict exogeneity violations (Nickell, 1981). We find similar results.7

To test if optimism predicts (and does not merely describe) hiring, we finally estimate a

specification in which the outcome and control variables are time-shifted one year in advance:

∆ logLi,t+1 = δOP−1 optit + τ ′Xi,t+1 + γi + χj(i),t+1 + εi,t+1 (30)

where δOP−1 is the effect of lagged optimism on hiring and the (time-shifted) control variables

Xi,t+1 are those studied in column 2. In this specification, hiring takes place in fiscal year

t+ 1 after the filing of the 10-K at the end of fiscal year t. Our point estimate in column 5 is

similar in magnitude to our comparable baseline estimate (column 2). In Table A5, we report

results from our baseline regression Equation 29, using opti,t−1 as an instrument for optit.

This is robust to any identification concern arising from the simultaneous determination of

optit and ∆ logLit, but estimates the original parameter δOP rather than δOP−1 . Our estimates

are positive, statistically significant, and larger than our baseline estimates.

Leveraging Exogenous CEO Exits as Natural Experiments. To further isolate plau-

sibly exogenous variation in firms’ optimism, we study the effects of changes in optimism

induced by plausibly exogenous CEO turnover. We provide the details in Appendix E.2.

Specifically, we estimate a variant of Equation 29 over firm-year observations corresponding

to the death, illness, or voluntary retirement of a CEO, as measured by Gentry, Harrison,

Quigley, and Boivie (2021). Employing this strategy, we find even larger effects of optimism

on hiring than those in our baseline specification.

Language Matters Over and Above Measured Beliefs. In our mapping from theory

to data, we treat sentiment in language as a proxy for the optimistic and pessimistic models

that shift beliefs. Thus, if we are trying to obtain a model-consistent estimate for the effect

of optimism on beliefs (the structural parameter δOP in Corollary 5), other measures of

managers’ beliefs could be a “bad control” in our regression model. Nonetheless, it may

be of independent interest to check whether text-based measures of optimism are useful to

predict firms’ decisions conditional on other measures of beliefs that have been pioneered by

prior work on belief-driven fluctuations (Gennaioli et al., 2016; Bordalo et al., 2021, 2024).

To gauge this, we construct three firm-level variables directly measuring beliefs. The first

two are based on managerial guidance and respectively measure the forecasted growth rate

of sales and capital expenditures. The third is based on equity analysts’ “long-term growth”

forecast of corporate earnings growth over three to five years. We note that managers and

analysts do not always provide forecasts, whereas firms always write a 10-K; therefore, these

7In Table A4, we report standard errors for the estimates of Table 1 under alternative clustering ap-
proaches.
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Figure 4: Language Matters Conditional on Measured Beliefs
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Notes: The regression model is Equation 29, the outcome is the change in firms’ log employment
from year t − 1 to t, the main regressor is a binary indicator for optimism, and all specifications
include firm and industry-by-time fixed effects. In each panel, we add a different control variable
measuring beliefs: managerial guidance for sales growth (log of guidance value minus log of last
year’s sales), managerial guidance for capital expenditures growth (log of guidance value minus log of
last year’s capital expenditures), and analysts’ long-term growth forecasts (both contemporaneous
and first lag). The two bars show the coefficient on optimism on a common sample without and
with the controls, respectively. In all specifications, we trim the 1% and 99% tails of the outcome
variable. Error bars are 95% confidence intervals based on standard errors clustered by firm ID.

beliefs data are available for only a subset of our full firm-year sample.

Even where forecasts are available, we find that optimism in text has a large and quan-

titatively stable effect on hiring conditional on beliefs (Figure 4). We also find a similar

result for capital investment (Figure A2). The importance of words over and above quan-

titative forecasts is consistent with the hypothesis of Shiller (2017) that language contains

important information about economic actions—and even with Keynes’s (1936) claim in his

General Theory that the emotional states that spur managers to action are not reflected in

“mathematical expectation.” Our finding is also consistent with the hypothesis from cor-

porate finance that managers rely heavily on non-quantitative soft information (Liberti and

Petersen, 2019) to make decisions. We emphasize that this is not in conflict with standard

decision theory: subjective beliefs are an “as if” representation of what drives actions, and

so it is entirely consistent that there are qualitative drivers of actions that do not mani-

fest in quantitative expectations. Finally, from a methodological perspective, our analysis

suggests that textual data—which are available more comprehensively in standard datasets

than forecast data—may be a viable alternative to quantitative forecasts for many economic

analyses.
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Robustness and Alternative Strategies. In the Appendix, we also report several ad-

ditional results that probe the robustness of our main specification. We summarize them

briefly here. First, Table A6 repeats the analysis of Table 1 with our conference-call-based

optimism measure, and finds similar results. Second, Table A7 repeats our main analysis

for different measured inputs—employment (the baseline), total variable input expenditure,

and investment—and demonstrates a positive and comparably sized effect of optimism on

all three. Third, in Figure A3 we re-create the regression models of the first three columns

of Table 1 with indicators for each decile of our continuous sentiment measure. We find

monotonically increasing associations of hiring with sentiment, implying that our binary

construction is not masking non-monotone effects of the continuous measure.

5.2 Non-Fundamental Beliefs vs. News

We have interpreted our text-based measurement of optimism as a proxy for firms’ believing

in an optimistic model: that is, a shift in priors toward being more optimistic about future

economic conditions. An alternative interpretation is that text-based optimism measures

news about future firm-level fundamentals. This would be inconsistent with our model, in

which optimism conveys no news about those fundamentals. Moreover, while our CEO-

exits design should handle such concerns, this news-based interpretation could create an

identification threat that is not handled by controlling for measured past fundamentals of

the firm.

We perform two tests that distinguish between the news and non-fundamental beliefs

interpretations.8 First, we test whether a firm’s optimism predicts positive future funda-

mentals and performance. This must be the case under the news interpretation, but need

not be the case under the non-fundamental beliefs interpretation. Second, we test how a

firm’s optimism affects its forecasts. Under both models, optimism should predict optimistic

forecasts. The news model predicts, if firms are Bayesian, that optimism efficiently enters

forecasts and therefore does not predict forecast errors; our model, by contrast, implies that

optimism predicts systematically over -optimistic forecasts.

Test I: Optimism Predicts Poor(er) Future Performance. To conduct the first test,

we estimate projection regressions of firm fundamentals and performance Zit, either TFP

growth ∆ log θ̂it, log stock returns Rit, or changes in profitability ∆πit, on optimism at leads

8In doing this, we are not testing the difference between news and noise as defined, for example, by
Chahrour and Jurado (2018). Instead, we are testing whether optimism is positively or negatively predictive
of future firm-level fundamentals and performance. In contrast to the non-fundamental fluctuations in prior
beliefs in our model, changes in beliefs driven by either news or noisy signals (that are correct on average)
in alternative models would predict positive such relationships.
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Figure 5: The Dynamic Relationship between Optimism and Firm Performance
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Notes: The model is Equation 31 and each dot shows the coefficient on binary optimism from
a different projection regression. The outcomes are (a) the log change in TFP (b) the log stock
return inclusive of dividends over the fiscal year, and (c) changes in profitability, defined as earnings
before interest and taxes (EBIT) as a fraction of the previous fiscal year’s variable costs. In all
specifications, we trim the 1% and 99% tails of the outcome variables. Error bars are 95% confidence
intervals, based on standard errors clustered at the firm and industry-year level.

and lags k:9

Zit = βk opti,t−k + γi + χj(i),t + εit (31)

Under the “news” hypothesis, we would expect βk > 0 for k > 0: that is, optimistic firms are

both more productive and more successful than their pessimistic counterparts in the future.

Under the “non-fundamental beliefs” hypothesis, we should expect to see that βk = 0 for

k > 0 for firm productivity (as a measure of fundamentals) and that βk < 0 for k > 0 for

firm performance.

Our findings, reported in Figure 5, strongly contradict this “news” hypothesis and are,

instead, consistent with the “non-fundamental beliefs” hypothesis. For k < 0 and all three

outcome variables, we find evidence of βk > 0. That is, a firm doing well today in terms of

TFP growth, stock-market returns, and/or profitability is likely to become optimistic in the

future. However, for k > 0, and all three outcome variables, we find no positive association.

That is, a firm that is optimistic this year does not on average do better next year.10 We

find, in sharp contrast, that optimistic firms have worse stock returns and profitability in the

9We measure profitability as earnings before interest and taxes (EBIT) divided by the previous fiscal
year’s total variable costs (cost of goods sold (COGS) plus selling, general, and administrative expense
(SGA), minus depreciation).

10To further investigate the effects on stock prices, we also estimate the correlation of optimism with stock
returns near the 10-K filing date (Table A8). We find essentially no evidence of stock response on or before
the filing day, and weak evidence of positive returns (about 15-25 basis points) in the four days after. The
latter finding is consistent with those in Loughran and McDonald (2011).
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Table 2: Optimism Predicts Over-Optimistic Forecasts

(1) (2)
Outcome is GuidanceOverOpti,t+1

optit 0.0310 0.0390
(0.0168) (0.0228)

Ind.-by-time FE X X
Lag labor X
Current and lag TFP X

N 4,773 2,735
R2 0.161 0.180

Notes: The regression model is Equation 32. The main regressor is a binary indicator for optimism,
defined in Section 4.2. The outcome is a binary indicator for whether sales guidance was high
relative to realized sales. Standard errors are two-way clustered by firm ID and industry-year.

future. This is consistent with our finding that optimistic firms persistently increase input

expenditure (column 5 of Table 1), but see no increase in productivity (panel (a) of Figure

5). Figure A4 replicates this analysis with conference-call-based optimism and finds similar

results.11 Finally, in Figure A5 we replicate this analysis with other financial fundamentals

(leverage, capital structure, payout policy, and stock return volatility): consistent with the

findings above, optimistic firms face relatively tighter future financial conditions.

We finally observe that the microeconomic costs of holding potentially incorrect beliefs

are—despite their statistical significance—economically small. Concretely, Figure 5(c) sug-

gests a negative effect on profitability of at most 2 percentage points. Our results therefore

suggest that, while firms do make mistakes, these mistakes are not so large as to be unrea-

sonable in the course of ordinary business operations.

Test II: Optimism Predicts Over-Optimistic Beliefs. We next directly test whether

optimistic firms hold over-optimistic beliefs. We do this by linking a subset of our data on

optimism with data on managerial guidance forecasts. We construct GuidanceOverOptit as

an indicator of managers’ guidance minus the realization exceeding the sample median.12

We estimate the following regression model:

GuidanceOverOpti,t+1 = β optit + τ ′Xit + χj(i),t + εit (32)

11Jiang, Lee, Martin, and Zhou (2019) relatedly find that positive textual sentiment in firm disclosures,
by their own measure, predicts negative excess returns over the subsequent year.

12When managers’ guidance is reported as a range, we code a point-estimate forecast as the range’s
midpoint. The method of comparing to the median corrects for the fact that, in more than half of our
observations, guidance is lower than the realized value, presumably due to asymmetric incentives.
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The control variables Xit are current and lagged TFP and lagged labor, all in log units. As

we have guidance data for only a small subset of firms and those firms do not always provide

guidance, we do not include firm fixed effects. Our findings are reported in Table 2. We find

a positive relationship that gets stronger when we add the aforementioned control variables

(columns 1 and 2). That is, textual optimism corresponds to forecasts that are predictably

more likely to exceed subsequent performance. This is exactly what we would predict under

the “non-fundamental beliefs” hypothesis and not what we would predict under the “news”

hypothesis.13

Summary. Based on these tests, we argue that there is strong evidence in favor of the non-

fundamental beliefs interpretation suggested by our model. To be concrete, to argue against

this interpretation of the data, one would have to argue that firms that use positive language,

subsequently expand hiring and investment, have predictably over-optimistic forecasts, and

perform worse in the future were somehow correct in their optimism.

5.3 Optimism is Contagious and Associative

We next estimate how optimism spreads across firms. Specifically, we estimate a version of

the linear-associative-contagious updating rule (Equation 21) in our panel data:

optit = u opti,t−1 + s optt−1 + r ∆ log Yt−1 + γi + εit (33)

where optt−1 is average optimism in the previous period, ∆ log Yt−1 is US real GDP growth,

and γi is an individual fixed effect. In our model interpretation, u measures stubbornness, s

measures contagiousness, and r measures associativeness.

We find strong evidence of all three forces (Table 3). That is, firms are significantly more

likely to be optimistic in year t if, in the previous year, they were optimistic, if other firms

were optimistic, and if the economy grew. Our finding of s > 0, in particular, is consistent

with Shiller’s (2020) hypothesis that optimism is contagious.

Our estimation of Equation 33 leverages only time-series variation. While this is the

level of variation that is relevant for calibrating the model, one may worry that the small

sample size leaves open the door to spurious correlation. We therefore also study a model

that allows for contagiousness and associativeness at finer levels. Specifically, we estimate

13In an analogous regression in which the outcome measures managerial optimism relative to contempora-
neous analyst forecasts, we find an imprecise positive effect in an uncontrolled model and a zero effect in the
controlled model (Table A9). These findings are consistent with a story in which models are shared between
management and investors, potentially due to persuasion in communications.
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Table 3: Optimism is Contagious and Associative

(1) (2)
Outcome is optit

Own lag, opti,t−1 0.209 0.214
(0.0071) (0.0080)

Aggregate lag, optt−1 0.290
(0.0578)

Real GDP growth, ∆ log Yt−1 0.804
(0.2204)

Industry lag, optj(i),t−1 0.276
(0.0396)

Industry output growth, ∆ log Yj(i),t−1 0.0560
(0.0309)

Firm FE X X
Time FE X
N 64,948 52,258
R2 0.481 0.501

Notes: The regression model is Equation 33 for column 1 and Equation 34 for column 2. Ag-
gregate and industry optimism are averages of the optimism variable over the respective sets of
firms. Industry output growth is the log difference in sectoral value-added calculated from BEA
data, linked to two-digit NAICS industries. Standard errors are two-way clustered by firm ID and
industry-year.

the following variation of the original regression at the industry level:

optit = uind opti,t−1 + sind optj(i),t−1 + rind ∆ log Yj(i),t−1 + γi + χt + εit (34)

where optj(i),t−1 is the leave-one-out mean of optimism within industry j(i) and ∆ log Yj(i),t−1

is the growth of sectoral value-added, measured by linking BEA sector-level data to our

NAICS-based classification.14 The time fixed effect χt absorbs aggregate contagiousness

and associativeness. We find strong evidence for contagiousness and weaker evidence for

associativeness within industries (column 2 of Table 3).15

Robustness. We measure contagiousness at a finer level by defining narrow sets of peers

that share equity analysts for firms listed on the New York Stock Exchange, following Kaustia

and Rantala (2021). We find a quantitatively similar industry-level effect and an indepen-

dent peer-set effect (Table A11). Moreover, we find consistent evidence of stubbornness,

contagiousness, and associativeness for the continuous measure of sentiment (Table A12).

14These data are available only from 1997.
15In Table A10, we report standard errors for Table 3 under alternative clustering.
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Table 4: Optimism is Contagious, Controlling for Past and Future Outcomes

(1) (2) (3) (4) (5)
Outcome is optit

Aggregate lag, optt−1 0.290 0.339 0.235
(0.0578) (0.0763) (0.1278)

Ind. lag, optj(i),t−1 0.276 0.241
(0.0396) (0.0434)

Firm FE X X X X X
Time FE X X
Own lag, opti,t−1 X X X X X
(∆ log Yt+k)

2
k=−2 X X

(∆ log Yj(i),t+k)
2
k=−2 X X

N 64,948 49,631 38,132 52,258 38,132
R2 0.481 0.484 0.497 0.501 0.498

Notes: The regression model is Equation 35 for columns 1-3, and an analogous industry-level
specification for columns 4 and 5 (i.e., Equation 34 with past and future controls). The added
control variables are two leads, two lags, and the contemporaneous value of: real GDP growth
(columns 2-3) and industry-level output growth (columns 3 and 5). Standard errors are two-way
clustered by firm ID and industry-year.

Inspecting the Mechanism: Spillovers are Not Driven by Common Shocks. The

coefficients of interest (u, r, and s) identify stubbornness, associativeness, and contagious-

ness, when idiosyncratic optimism, aggregate optimism, and GDP are unrelated to other

factors that affect changes in optimistic sentiment at the firm level. Since the key regressor

is lagged aggregate optimism, our estimates are not threatened by the reflection problem of

Manski (1993). Nevertheless, our estimates may be contaminated by omitted variables bias

because aggregate optimism is correlated with common shocks to the economy.

To test for this possibility, we augment our previous regressions to include controls for

past and future fundamentals in the form of two leads and lags of real GDP or value-added

growth at the aggregate and industry levels. Specifically, we estimate

optit = u opti,t−1 + s optt−1 + γi +
2∑

k=−2

(
ηagg
k ∆ log Yt+k + ηind

k ∆ log Yj(i),t+k
)

+ εit (35)

We estimate an analogous specification at the industry level, but with the aggregate leads

and lags absorbed. If common positive shocks to the economy and sectors were driving some

or all of the estimated spillovers, we would expect to find a severely attenuated estimate of

the contagiousness coefficient s. Even under our interpretation, future output growth could

be a “bad control” that is caused by optimism and absorbs some of its effect.
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We report our estimates of the contagiousness coefficients in Table 4, adding the “bad

controls” one at a time (columns 2 and 3) and find similar results to our baseline (column

1). Similarly, for our industry-level estimates, we find no statistically significant evidence of

coefficient attenuation as additional controls are added (columns 4 and 5). In Table A13, we

report analogous estimates with the continuous sentiment variable and find similar results.

These estimates indicate that our results are not driven by omitted aggregate conditions.

Alternative Identification Strategy: Granular IV. While the previous strategy sug-

gests that aggregate shocks do not bias our findings, it remains possible that unmeasured

aggregate shocks to fundamentals could bias our results. To further test whether our measure

of contagiousness captures spillovers, we pursue a granular instrumental variables strategy.

The idea underlying this strategy is that larger firms are more likely to influence the views of

other firms than smaller firms. Under this view, we can measure idiosyncratic changes in the

optimism of firms (which we have shown are non-fundamental in Test I above) and weight

this by firm size to construct a granular instrumental variable for past optimism (Gabaix

and Koijen, 2020). Although not comparable to our main estimates because the spillover

measure is different, we recover a large and statistically significant contagiousness effect.

Contemporaneously, Jamilov et al. (2024) pursue a similar strategy and find similar results.

6 Quantification

We now combine our model and empirical results to measure the quantitative effects of

contagious beliefs on business cycles and decompose the mechanisms underlying this.

6.1 Estimating the Model

In Section 3.6, we showed that we could estimate the model in three steps. We now combine

our empirical estimates from Section 5 with this three-step approach to estimate the model.

We provide the point estimates of model parameters in Table 5 and provide additional details

in Appendix F.

Step I: Estimation of the Effect of Optimism. To estimate the static relationship

between output and optimism, we need to estimate f . In turn, f requires knowledge of:

δOP , the partial-equilibrium effect of optimism on hiring; α, the returns-to-scale parameter;

ε, the elasticity of substitution between varieties; and ω, the extent of complementarity

(which itself depends on γ, indexing income effects in labor supply, and ψ, the inverse Frisch

elasticity of labor supply). We combine our baseline regression estimate of δ̂OP = 0.0355

(see Table 1) with an external calibration of α, ε, γ, and ψ, which together also pin down ω.
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For the external calibration, we impose that intermediate goods firms have constant

returns-to-scale or α = 1, which has been argued by Basu and Fernald (1997) and Foster,

Haltiwanger, and Syverson (2008) to be a reasonable assumption for large US firms. Second,

as noted by Angeletos and La’O (2010), γ indexes wealth effects in labor supply, which are

empirically very small (Cesarini, Lindqvist, Notowidigdo, and Östling, 2017). Hence, we set

γ = 0. Third, we calibrate the inverse Frisch elasticity of labor supply at ψ = 0.4 based on

standard macroeconomic estimates (Peterman, 2016). Finally, we calibrate the elasticity of

substitution to match estimated markups from De Loecker, Eeckhout, and Unger (2020) of

60%, which implies that ε = 2.6. Hence, altogether, this calibration implies an aggregate

degree of strategic complementarity of ω = 0.49. In Section 6.2, we study the sensitivity of

our results to this external calibration, and we introduce two other estimation strategies for

complementarity: using estimates of demand multipliers from the literature and inferring a

demand multiplier for optimism using our own firm-level regressions.

Step II: Estimation of Updating Rules. To estimate the parameters of the LAC up-

dating rules, we use the linear probability model estimated in Table 3.16 This yields values of

u = 0.208 for stubbornness, r = 0.804 for associativeness, and s = 0.290 for contagiousness.

Step III: Estimation of Private Information and the Shock Processes. To estimate

the extent of private information and the persistence and volatility of productivity shocks,

we showed that we need to estimate the model-implied ARMA(1,1) process for fundamental

output. Now that we have estimated f , we can compute fundamental output as:

log Y f
t = log Yt − f(Qt) (36)

To calculate log Y f
t in the data, we take log Yt as band-pass filtered US real GDP (Baxter

and King, 1999), Qt as our measured time series of aggregate optimism (see Figure A1), and

f as our calibrated function.17 We estimate by maximum-likelihood the ARMA(1,1) process

for Y f
t and then set (ρ, σθ, κ) to exactly match the three estimated ARMA parameters. Upon

obtaining κ, the restriction on κ and µO − µP imposed by δOP yields the value of µO − µP .

Finally, we estimate the variance of optimism shocks, σ2
ε , to match the time-series variance

of optimism.

16While the linear probability model does not necessarily yield probabilities between zero and one, our
estimates of u, r and s imply updating probabilities that are always between zero and one so long as output
does not deviate by more than 30% (holding fixed εt), i.e., there is a five-standard-deviation optimism shock.

17We apply the Baxter and King (1999) band-pass filter to post-war quarterly US real GDP data (Q1
1947 to Q1 2022). We use a lead-lag length of 12 quarters, a low period of 6 quarters, and a high period of
32 quarters. We then average these data to the annual level.
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Table 5: Model Calibration

Fixed

ε Elasticity of substitution 2.6
γ Income effects in labor supply 0
ψ Inverse Frisch elasticity 0.4
α Returns-to-scale 1

Calibrated

µO − µP Belief effect of optimism 0.028
κ Signal-to-noise ratio 0.344
ρ Persistence of productivity 0.086
σθ Std. dev. of the productivity innovation 0.011
u Stubbornness 0.208
r Associativeness 0.804
s Contagiousness 0.290
σε Std. dev. of the optimism shock 0.044

Notes: “Fixed” parameters are externally set. “Calibrated” parameters are chosen to hit empirical
targets. For more details, see Section 6.1.

The Estimated Model Features Almost i.i.d. Shocks. Before proceeding to the

quantitative results, we observe an important property of the estimated model: our point

estimate for the persistence of exogenous productivity shocks is ρ = 0.086. As we have only

allowed for i.i.d. optimism shocks, this means that our model only requires almost i.i.d.

exogenous shocks to match the time-series properties of output. Thus, our estimates imply

that contagious beliefs generate strong internal propagation. This represents an important

difference between our theory of model dynamics and theories based on learning and dis-

persed information (see e.g., Woodford, 2003; Lorenzoni, 2009; Angeletos and La’O, 2010),

all of which require exogenously persistent fundamentals about which agents slowly learn.

6.2 How Does Optimism Shape the Business Cycle?

Using the calibrated model, we now study the effects of optimism on the business cycle

via two complementary approaches: (i) gauging the historical effect of swings in business

optimism on US GDP and (ii) exploring the full dynamic implications of contagious and

associative optimism.

The Effects of Optimism on US GDP. In our empirical exercise, which leveraged

cross-sectional data on US firms’ optimism, the general-equilibrium effect of optimism on

total production was the unidentified “missing intercept.” Now, equipped with the model

calibration of general-equilibrium forces, we can return to the question of how changes in

optimism have historically affected the US business cycle. We calculate the time series of

f(Qt), where f is the calibrated function mapping aggregate optimism to aggregate output,
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Figure 6: The Effect of Optimism on Historical US GDP
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Notes: The “Real GDP Cycle” is calculated from a Baxter and King (1999) band-pass filter cap-
turing periods between 6 and 32 quarters. The “Contribution of Optimism” is the model-implied
effect of optimism on log output. The 95% confidence interval incorporates uncertainty from the
estimation of δOP using the delta method.

which depends on the partial-equilibrium effect of optimism on hiring, returns-to-scale, and

the demand multiplier, and Qt is the observed annual time series for business optimism. We

take the observed time path of aggregate optimism as given, and therefore use the estimated

dynamics of optimism only to determine the shocks that rationalize this observed path.

Figure 6 illustrates our findings by plotting the cyclical component of real GDP (dashed

line) and the contribution of measured optimism toward output according to our model (solid

line with grey 95% confidence interval). Cyclical optimism explains a meaningful portion of

fluctuations, particularly the booms of the mid-1990s and the mid-2000s and the busts of

2000-2002 and 2007-2009. The decline in the optimism component of GDP explains 31.65%

(SE: 2.68%) of the output loss between 2000 and 2002 and 18.06% (SE: 1.53%) of the output

loss between 2007 and 2009.

To unpack the model-implied causes of the historical business cycle, we plot the sequence

of fundamental output and optimism shocks that our model requires to match the realized

optimism and output time series in Figure A6. Our model accounts for the early 2000s

recession with a large negative optimism shock (ε2001 = −0.08, or -1.8 standard deviations in

our calibration) and a moderate-sized shock to fundamental output. For the Great Recession,

our model implies a larger shock to fundamentals along with a smaller optimism shock

(ε2008 = −0.06 or -1.4 standard deviations). The larger contribution of, and shock to,

optimism at the outset of the early 2000s recession is consistent with a story that a break

in confidence, associated with the “dot com” crash in the stock market, spurred a recession

despite sound economic fundamentals. This is further consistent with independent textual
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evidence that “crash narratives” in financial news were especially rampant in this period

(Goetzmann, Kim, and Shiller, 2022).

Contagious Models and Economic Fluctuations. We now fully describe the role of

model dynamics in shaping the business cycle via the estimated process for how optimism

spreads. To produce a summary statistic for the contribution of optimism toward the co-

variance structure of output, we observe that the covariance of output at lag ` ≥ 0 can be

decomposed into four terms:

Cov[log Yt, log Yt−`] = Cov[log Y f
t , log Y f

t−`] + Cov[f(Qt), f(Qt−`)]

+ Cov[f(Qt), Y
f
t−`] + Cov[f(Qt−`), Y

f
t ]

(37)

The first term captures the volatility and persistence of exogenous fundamentals (i.e., the

driving productivity shocks). The second term captures the volatility and persistence of

the non-fundamental component of output. The last two terms capture the relationship

of optimism with past and future fundamentals, which arises from the co-evolution of the

prevalence of models with economic outcomes. We therefore define non-fundamental variance

as the total autocovariance arising from endogenous optimism as the sum of the last three

terms, as well as its fraction of total variance, at each lag `:

Non-Fundamental Autocovariance` = Cov[log Yt, log Yt−`]− Cov[log Y f
t , log Y f

t−`]

Share of Variance Explained` =
Non-Fundamental Autocovariance`

Cov[log Yt, log Yt−`]

(38)

We calculate these statistics at horizons ` ∈ {0, 1, 2} and under three model variants: the

baseline model with optimism shocks, a variant model which turns off the shocks (or sets

σ2
ε = 0), and a variant model that keeps optimism shocks but shuts down the endogenous

evolution of models (by setting u = r = s = 0).18

Optimism explains 19% of contemporary variance (` = 0), and this fraction increases

with the lag (Figure 7). At one-year and two-year lags, optimism explains 33% and 79% of

output autocovariance, respectively. Thus, most medium-frequency (two-year) dynamics are

produced by contagious optimism instead of fundamentals. The model without endogenous

dynamics of optimism explains only 4% of output variance and, as optimism shocks are i.i.d.,

0% of output auto-covariance. Moreover, while the model without optimism shocks matches

only 5% of output variance, it accounts for 17% and 69% of one-year and two-year output

autocovariance. Interestingly, the separate contributions to output variance of shocks and

18As discussed in Appendix F, we always add a constant to LAC updating so 0.5 is the interior steady-state
when output is at its steady state. Thus, the “no dynamics” variant sets Qt+1 = 0.5 + εt.
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Figure 7: The Contribution of Optimism to Output Variance
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endogenous dynamics sum to less than one-half of their joint explanatory power. This result

establishes that the contagiousness and associativeness of models are amplifying propagation

mechanisms for exogenous sentiment shocks.

Sensitivity Analysis. In Table A16, we report a sensitivity analysis of the conclusions

above to different calibrations for the macroeconomic parameters. We first focus on the

calibration of macroeconomic complementarity and, by extension, the demand multiplier.

Recall that f(Q) ≈ αδOP

1−ω Q, where 1
1−ω is the general equilibrium demand multiplier in

our economy, α indexes the returns-to-scale, and δOP is the partial equilibrium effect of

optimism on hiring. Our baseline calibration implies a multiplier of 1
1−ω = 1.96. In rows

1, 2, 3, and 4 we vary the multiplier by: (i) adjusting the inverse-Frisch elasticity to 2.5 to

match microeconomic estimates (Peterman, 2016), (ii) allowing for greater income effects

in labor supply γ = 1, (iii) matching the empirical estimates of the demand multiplier of

1.33 from Becko, Flynn, and Patterson (2024), and (iv) estimating the general equilibrium

multiplier semi-structurally by using the extent of omitted variables bias from omitting a

time fixed effect in the regression of hiring on optimism (see Appendix F.4 for the details).

Our numerical results from adjusting the multiplier, holding fixed (δOP , α, ε), convey that the

contribution of optimism is increasing in this number. We finally consider sensitivity to the

calibrations of the elasticity of substitution ε (row 5 of Table A16) and the returns-to-scale
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α (row 6 of Table A16) holding fixed the multiplier (via adjustment in ψ). Changing ε has

close to no effect on our results, due to the aforementioned near-linearity of f . Reducing α,

or assuming decreasing returns to scale, dampens the effect of optimism on output because

it implies a smaller production effect of our estimated effect of optimism on hiring.

6.3 Can Contagious Optimism Generate Hysteresis?

We have shown that the dynamics of optimism generate quantitatively significant business

cycles. However, we have not yet explored the implications of contagious models for hystere-

sis and long-run movements in output. Our theoretical analysis delimited two qualitatively

different regimes for macroeconomic dynamics with contagious optimism: one with stochas-

tic fluctuations around a stable steady state, and one with hysteresis and (almost) global

convergence to extreme steady states. Are models contagious enough to generate hysteresis?

For the LAC case which we have taken to the data, the necessary and sufficient condition

for extremal multiplicity is given by Equation 22. We compute the empirical analog of this

condition:

M̂ = û+ ŝ+ r̂
α

1− ω δ̂
OP − 1 (39)

If M̂ > 0, the calibrated model features hysteresis in the dynamics of optimism and output; if

M̂ < 0, the model features oscillations around a stable steady state. We find M̂ = −0.44 < 0

with a standard error of 0.052, implying stable oscillations and ruling out hysteresis dy-

namics. This reflects the fact that decision-relevance, stubbornness, contagiousness, and

associativeness are sufficiently small for optimism.

We next explore the sensitivity of this conclusion to our calibration of the two parameters

on which it most depends: stubbornness and contagiousness. In Figure 8, we plot our point

estimate of contagiousness and stubbornness as a plus and its 95% confidence interval as a

dotted ellipse. We also plot, as a dashed line, the condition for M = 0; to the left of this line,

M < 0, and to the right of this line, M > 0. In the Figure, we shade the fraction of variance

explained by non-fundamental optimism. Given the statistical precision in the estimates of

stubbornness and contagiousness, we are confident that contagious models contribute stable

fluctuations to the economy and explain about 20% of the variance in output. To reverse

this and enter the regime of extremal multiplicity (M > 0) would require, for example, about

2.5 times the contagiousness that we observe.

Associativeness has a significantly smaller effect on macroeconomic dynamics than con-

tagiousness. Indeed, removing this force entirely (r = 0) reduces the variance contribution

of optimism by only four percentage points, from 19% to 15%. Intuitively, associativeness

affects macroeconomic dynamics only through its interaction with the static effect of opti-
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Figure 8: Variance Decomposition for Different Values of Stubbornness and Contagiousness

Notes: Calculations vary u and s, holding fixed all other parameters at their calibrated
values. The shading corresponds to the fraction of variance explained by optimism, or
Share of Variance Explained0 defined in Equation 38. The plus is our calibrated value from Table
5, and the dotted line is the boundary of a 95% confidence set. The dashed line is the condition of
extremal multiplicity from Corollary 4 and Equation 22.

mism on output. This can be seen directly in the calculation of the extremal multiplicity

statistic in Equation 39, in which r is multiplied by α
1−ω δ̂

OP ≈ 0.07. Thus, associativeness—

which represents the role of (possibly extrapolative) learning from outcomes—contributes

comparatively little to the dynamics of optimism and its effects on the business cycle.

How does extremal multiplicity interact with our model’s predictions for non-fundamental

volatility? To isolate the role of endogenous propagation, our theoretical discussion of ex-

tremal multiplicity considered paths of the economy without shocks. In the quantitative

model, the economy is constantly buffeted with shocks that move optimism away from its

steady state(s). Near the condition for extremal multiplicity, non-fundamental variance

reaches essentially 100% of total variance. This is because even small shocks have the po-

tential to “go viral,” and the force pulling the economy toward an interior steady state (i.e.,

balanced optimism and pessimism) is weak.19

Finally, far to the right of the extremal multiplicity condition, contagious optimism ex-

plains little output variance. This is because the economy quickly settles into an extreme

steady state, fully optimistic or fully pessimistic, and moves quickly back to this steady

19Due to the presence of shocks to optimism, this prediction is symmetric around the extremal multiplicity
threshold; in the variant model which turns off optimism shocks, the extremal multiplicity condition sharply
delineates the regime in which optimism fluctuations contribute to output variance from the regime in which
there is complete hysteresis (Figure A7).
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state in response to shocks. Thus, the “M test” provides an accurate diagnostic for whether

economic models can “go viral” even in the presence of shocks.

6.4 Emergent Optimism in a Multidimensional World

In our main analysis, we restricted attention to a case in which agents’ models of the world

are one-dimensional: firm managers are either optimistic or pessimistic about their overall

economic prospects. Consequently, our perspective on how models spread was focused on the

dynamics of overall optimism. Of course, in practice, managers hold many different views

on a wide variety of topics, and their adoption of each individual view may be subject to

contagious and associative dynamics. This perspective reminds of Shiller’s (2020) hypothesis

that constellations of many small and semantically related narratives reinforce one another

to create stronger economic and social effects, and that the confluence of seemingly unrelated

narratives may explain business-cycle fluctuations. We now explore this idea in an extension

of our analysis.

Model. We first describe an enriched model in which managers hold a different view re-

garding each of many underlying topics, and these views together determine their overall

optimism. There is a latent space of K topics. Agents either do or do not hold a (binary)

view about each topic, and we denote individuals’ views by λit = (λ1,it, . . . , λK,it) ∈ {0, 1}K .

We let Qk
t =

∫ 1

0
λk,it di ∈ [0, 1] denote the share of population that adopts each view.

Optimism emerges from the confluence of many views. To model this tractably, we

assume that the aggregate fraction of optimists, Qt, depends linearly on the fraction of

agents adopting each view:

Qt =

[
K∑
k=1

ζkQk
t

]1

0

(40)

where (ζk)Kk=1 are weights controlling the marginal effect of each view on emergent optimism.

Each manager’s view about each topic k evolves via a linear-associative-contagious pro-

cess. That is, we let (P k
1 , P

k
0 ) respectively denote functions returning the probability that

an agent who currently does or does not hold view k at time t holds the view at time t+ 1:

P k
1 (log Y,Q, ε) =

[
uk

2
+ rk log Y + skQk + εk

]1

0

P k
0 (log Y,Q, ε) =

[
−u

k

2
+ rk log Y + skQk + εk

]1

0

(41)

We allow for k-specific stubbornness, associativeness, and contagiousness, as well as indepen-

dent shocks εk ∼ N(0, σ2
ε,k). The dynamics of different views interact through associative-
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ness. For example, views may contribute to optimism, boosting the economy, and thereby

indirectly promoting other views associated with a good economy.

The rest of the model is the same as the baseline. Thus, while dynamics are the same

conditional on the process for optimism, the process for emergent optimism through the

latent evolution of views may differ.

Estimation. We employ two strategies to measure topics and managers’ views. The first is

a partially supervised method that detects firms’ discussion of the nine Perennial Economic

Narratives described by Shiller (2020). The second is an unsupervised Latent Dirichlet

Allocation model (Blei et al., 2003), which flexibly identifies clusters of topics discussed by

firms. We describe the details behind these approaches in Appendix F.3. We estimate the

weights ζ by running the following firm-level regression:

optit =
9∑

k=1

ζkShiller · Shillerkit +
100∑
k=1

ζktopic · topickit + γi + χj(i),t + εit (42)

This model estimates the marginal effects of each granular topic on the propensity toward

optimism. As throughout our analysis, we control for firm fixed effects and non-parametric

sector-by-time trends. We apply the Rigorous Square-Root post-LASSO method of Belloni,

Chen, Chernozhukov, and Hansen (2012) to account for the likely fact that not all extracted

topics are relevant for optimism. Applying this method yields a relevant subset of 30 LDA

topics and 8 Shiller topics. Table A22 in the Appendix prints each of the selected topics and

their respective ζk. Next, we estimate stubbornness, associativeness, and contagiousness for

each topic just as in the main analysis, by estimating variants of Equation 33. This step fixes

the parameters (uk, rk, sk) for each selected topic. These estimates are also reported in Table

A22. We calibrate the variance of view shocks, σ2
ε,k, to match the time-series variance of each

granular topic. Specifically, we minimize the sum of square deviations of model-generated

variances from measured time-series variances. Finally, to calibrate the rest of the model,

we proceed exactly as described in Section 6.1.

Results. Comparing the model with granular topics to the baseline, we find that emergent

optimism explains a comparable amount of the variance and autocorrelation of output. For

example, optimism explains 16% of output variance and 31% of the first-lag autocovariance,

compared to 19% and 33% in our baseline calibration (Figure A10).

However, this similarity belies significant heterogeneity in how the granular topics spread,

which is in turn related to each topic’s tendency to “go viral.” To assess this, we observe
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Figure 9: The Viral Components of Emergent Optimism
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Notes: Panel (a) plots our estimates of the virality statistic M̂k, defined in Equation 43, against
our estimates of the constellation weights ζ̂k, from Equation 42. The solid lines are 95% confidence
intervals. Panel (b) plots our estimated virality statistics against their simulated variances (blue
circles) and their empirical time-series variances (orange crosses).

that the topic-specific M statistics,

M̂k = ûk + ŝk + r̂k
αζ̂kδ̂OP

1− ω − 1 (43)

correspond to the correct hysteresis test statistic if topic k were the only component of emer-

gent optimism. Intuitively, M̂k captures each granular topic’s “tendency toward virality.”

We find that many topics have M statistics that exceed (or nearly exceed) the criticality

threshold of zero (see Panel (a) of Figure 9). These topics, unlike aggregate optimism, can

therefore go viral. Moreover, emergent optimism places large weights on many of these viral

topics (see Panel (a) of Figure 9). Thus, aggregate optimism is significantly driven by viral

topics. Finally, the topics that our model predicts as being close to the threshold (Mk = 0)

are precisely the highest-variance topics in the data (see Panel (b) of Figure 9). This provides

empirical validation of the M statistic as a diagnostic for virality.

Taken together, we find that emergent optimism is largely driven by viral and volatile

topics. But, despite the virality of its underlying components, emergent optimism is stable

and its effect on the business cycle is almost unchanged relative to our baseline model.

7 Conclusion

This paper studies the macroeconomic implications of contagious beliefs. We first introduce

a real business cycle model in which competing models of the world gain and lose prevalence
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based on their match with reality (associativeness) and their existing prevalence (contagious-

ness). Contagious optimism can generate non-fundamentally driven boom-bust cycles and

hysteresis. To take this model to the data, we extract firms’ sentiment from their language

in regulatory reports and earnings calls. We find that contagious and associative optimism

affects firms’ decisions and beliefs without representing news about fundamentals. When

we calibrate the model to match the data, we find that measured declines in optimism ac-

count for approximately 32% of the peak-to-trough decline in output over the early 2000s

recession and 18% over the Great Recession. Finally, we show that the interaction of many

simultaneously evolving and highly contagious topics, some of which are individually prone

to hysteresis, can nevertheless underlie stable fluctuations in emergent optimism and out-

put. Taken together, our analysis shows that belief contagion may underlie many important

features of the business cycle.

Our analysis leaves open at least three important areas for future study. First, we have

analyzed how firms’ contagious beliefs matter and abstracted away from studying similar

dynamics on the household side, which may influence spending and saving. Moreover, co-

evolving models on both the “supply side” and the “demand side” of the economy might have

mutually reinforcing effects. Second, we followed the standard approach in the dispersed

beliefs literature and abstracted from other persistent state variables, such as capital. It

is natural that including further such state variables would strengthen the effects of non-

fundamental beliefs on output by inducing additional endogenous persistence. Finally, there

remains much more to study about what makes a model contagious. Probing these deeper

origins of models and their relationship to economic narratives could help further account

for the full economic, semantic, and psychological interactions among economic agents who

are trying to make sense of a complex world.
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A Omitted Derivations and Proofs

A.1 Proof of Theorem 1

Proof. We guess and verify that there exists a unique quasi-loglinear equilibrium. That is,

there exists a unique equilibrium of the following form:

log Y (θt, θt−1, Qt) = a0 + a1 log θt + a2 log θt−1 + f(Qt) (44)

for some parameters a0, a1, a2 ∈ R and function f : [0, 1]→ R. To verify this conjecture, we

need to compute best replies under this conjecture and show that when we aggregate these

best replies that the conjecture is consistent and, moreover, that it is consistent for a unique

tuple (a0, a1, a2, f).

From the arguments in the main text, we have Equation 12 holds. Thus, we need to

compute two objects: logEit
[
θ
− 1+ψ

α
it

]
and logEit

[
Y

1
ε
−γ

t

]
. We can compute the first object

directly. Conditional on a signal sit and a weight λit, we have that the distribution of the

aggregate component of productivity is:

log θt|sit, λit ∼ N
(
κsit + (1− κ)µ(λit, θt−1), σ2

θ|s
)

(45)

by the standard formula for the conditional distribution of jointly normal random variables,

where:

µ(λit, θt−1) = (1− ρ)(µOλit + µP (1− λit)) + ρ log θt−1 , κ =
1

1 + σ2
e

σ2
θ

, σ2
θ|s =

1
1
σ2
θ

+ 1
σ2
e

(46)

with κ being the signal-to-noise ratio and σ2
θ|s the variance of fundamentals conditional on

the signal. Thus, the conditional distribution of idiosyncratic productivity is given by:

log θit|sit, λit ∼ N
(
log γi + κsit + (1− κ)µ(λit, θt−1), σ2

θ|s + σ2
θ̃

)
(47)

where we will denote the above mean by µit and variance by η2. Hence, rewriting and using

the moment generating function of a normal random variable, we have that:

logEit
[
θ
− 1+ψ

α
it

]
= logEit

[
exp

{
−1 + ψ

α
log θit

}]
= −1 + ψ

α
µit +

1

2

(
1 + ψ

α

)2

η2

(48)
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Under our conjecture (Equation 44), we can moreover compute:

logEit
[
Y

1
ε
−γ

t

]
= logEit

[
exp

{(
1

ε
− γ
)

(a0 + a1 log θt + a2 log θt−1 + f(Qt)

}]
=

(
1

ε
− γ
)

[a0 + a1(µit − log γi) + a2 log θt−1 + f(Qt)]

+
1

2
a2

1

(
1

ε
− γ
)2 [

η2 − σ2
θ̃

]
(49)

Thus, we have that best replies under our conjecture are given by:

log xit =
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
µit −

1

2

(
1 + ψ

α

)2

η2

+

(
1

ε
− γ
)

[a0 + a1(µit − log γi) + a2 log θt−1 + f(Qt)] +
1

2
a2

1

(
1

ε
− γ
)2 [

η2 − σ2
θ̃

] ]
(50)

To confirm the conjecture, we must now aggregate these levels of production and show that

they are consistent with the conjecture. Performing this aggregation we have that:

log Yt = log

[(∫
[0,1]

x
ε−1
ε

it

) ε
ε−1

]

=
ε

ε− 1
logEt

[
exp

{
ε− 1

ε
log xit

}]
=

ε

ε− 1
logEt

[
Et
[
exp

{
ε− 1

ε
log xit

}
|λit
]] (51)

Moreover, expanding the terms in Equation 50, we have that:

log xit =
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
[log γi + κsit + (1− κ)µ(λit, θt−1)]

− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)
+

(
1

ε
− γ
)

[a0 + a1 (κsit + (1− κ)µ(λit, θt−1)) + a2 log θt−1 + f(Qt)]

+
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

]
(52)
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which is, conditional on λit, normally distributed as both log γi and sit are both normal.

Hence, we write log xit|λit ∼ N(δt(λit), σ̂
2), where:

δt(λit) =
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)

+
1 + ψ

α
[µγ + κ log θt + (1− κ)µ(λit, θt−1)]− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)
+

(
1

ε
− γ
)

[a0 + a1 (κ log θt + (1− κ)µ(λit, θt−1)) + a2 log θt−1 + f(Qt)]

+
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

]
(53)

and:

σ̂2 =

(
1

1+ψ−α
α

+ 1
ε

)2 [(
1 + ψ

α

)2

σ2
γ + κ2

[
1 + ψ

α
+ a1

(
1

ε
− γ
)]2

σ2
e

]
(54)

Thus, we have that:

Et
[
exp

{
ε− 1

ε
log xit

}
|λit
]

= exp

{
ε− 1

ε
δt(λit) +

1

2

(
ε− 1

ε

)2

σ̂2

}
(55)

and so:

Et
[
Et
[
exp

{
ε− 1

ε
log xit

}
|λit
]]

= Qt exp

{
ε− 1

ε
δt(1) +

1

2

(
ε− 1

ε

)2

σ̂2

}

+ (1−Qt) exp

{
ε− 1

ε
δt(0) +

1

2

(
ε− 1

ε

)2

σ̂2

}

=

[
Qt exp

{
ε− 1

ε
(δt(1)− δt(0))

}
+ (1−Qt)

]
exp

{
ε− 1

ε
δt(0) +

1

2

(
ε− 1

ε

)2

σ̂2

} (56)

Yielding:

log Yt = δt(0) +
1

2

ε− 1

ε
σ̂2 +

ε

ε− 1
log

(
Qt exp

{
ε− 1

ε
(δt(1)− δt(0))

}
+ (1−Qt)

)
(57)

where we define αδOP = δt(1)− δt(0) and compute:

δt(1)− δt(0) =
1

1+ψ−α
α

+ 1
ε

(
1 + ψ

α
+ a1

(
1

ε
− γ
))

(1− κ)(1− ρ)(µO − µP ) = αδOP (58)
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and note that this is a constant. Finally, we see that δt(0) is given by:

δt(0) =
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
(µγ + (1− κ)((1− ρ)µP + ρ log θt−1)− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)
+

(
1

ε
− γ
)

(a0 + a1(1− κ)((1− ρ)µP + ρ log θt−1)) +
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

+

[
1 + ψ

α
+ a1

(
1

ε
− γ
)]

κ log θt +

(
1

ε
− γ
)

(a2 log θt−1 + f(Qt))

]
(59)

By matching coefficients between Equations 57 and Equation 44, we obtain a0, a1, a2, and

f .

We first match coefficients on log θt to obtain an equation for a1:

a1 =

[
1+ψ
α

+ a1

(
1
ε
− γ
)]
κ

1+ψ−α
α

+ 1
ε

(60)

Under our maintained assumption that
1
ε
−γ

1+ψ−α
α

+ 1
ε

∈ [0, 1), as κ ∈ [0, 1], we have that this has

a unique solution:

a1 =

1+ψ
α
κ

1+ψ−α
α

+ 1
ε

1− ( 1
ε
−γ)κ

1+ψ−α
α

+ 1
ε

=
1

1− κω
1+ψ
α
κ

1+ψ−α
α

+ 1
ε

(61)

which is in terms of primitive parameters and is moreover positive.

Second, we match coefficients on log θt−1 to obtain an equation for a2:

a2 =
1

1+ψ−α
α

+ 1
ε

[(
1 + ψ

α
+

(
1

ε
− γ
)
a1

)
(1− κ)ρ+

(
1

ε
− γ
)
a2

]
(62)

This implies that:

a2 =
1

1− ω
1

1+ψ−α
α

+ 1
ε

[
1 + ψ

α
+

(
1

ε
− γ
)
a1

]
(1− κ)ρ

=
1

1− ω
1

1+ψ−α
α

+ 1
ε

[
1 + ψ

α
+

(
1

ε
− γ
)

1

1− κω
1+ψ
α
κ

1+ψ−α
α

+ 1
ε

]
(1− κ)ρ

(63)

which is in terms of primitive parameters.
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Third, by collecting terms with Qt we obtain an equation for f :

f(Q) =
1
ε
− γ

1+ψ−α
α

+ 1
ε

f(Q) +
ε

ε− 1
log

(
1 +Q

[
exp

{
ε− 1

ε
αδOP

}
− 1

])
(64)

which has a unique solution as
1
ε
−γ

1+ψ−α
α

+ 1
ε

∈ [0, 1) and can be solved to yield:

f(Q) =
ε
ε−1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

log

(
1 +Q

[
exp

{
ε− 1

ε
αδOP

}
− 1

])
(65)

where we observe that δOP depends only on primitive parameters and a1, for which we have

already solved.

Finally, by collecting constants, we obtain an equation for a0:

a0 =
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
(µγ + (1− κ)(1− ρ)µP )− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)
+

(
1

ε
− γ
)

(a0 + a1(1− κ)(1− ρ)µP ) +
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

]
+

1

2

ε− 1

ε
σ̂2

(66)

Solving this equation yields:

a0 =
1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

[
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
(µγ + (1− κ)(1− ρ)µP )− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)

+

(
1

ε
− γ
)
a1(1− κ)(1− ρ)µP +

1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

]
+

1

2

ε− 1

ε
σ̂2

]
(67)

which we observe depends only on parameters, a1, and σ̂2. Moreover, σ̂2 depends only on

parameters and a1. Thus, given that we have solved for a1, we have now recovered a0, a1, a2

and f uniquely and verified that there exists a unique quasi-loglinear equilibrium. Finally,

to obtain the formula for the best reply of agents, simply substitute a0, a1, a2 and f into

Equation 52 and label the coefficients as in the claim.
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A.2 Proof of the Claims in Remark 1

We now prove the claims made in Remark 1. We have already shown that there exists a

unique quasi-loglinear equilibrium. More generally, we seek to rule out an equilibrium of

any other form. To do so, we show that there is a unique equilibrium when fundamentals

are bounded by some M ∈ R, log θt ∈ [−M,M ], log γi ∈ [−M,M ], log θ̃it ∈ [−M,M ], and

eit ∈ [−M,M ].

Lemma 1. When fundamentals are bounded, there exists a unique equilibrium

Proof. To this end, we can recast any equilibrium function log Y (θ, θ−1, Q) as one that solves

the fixed point in Equation 12. In the case where fundamentals are bounded, this can be

accomplished by demonstrating that the implied fixed-point operator is a contraction by

verifying Blackwell’s sufficient conditions. More formally, consider the space of bounded,

real-valued functions C under the L∞-norm and consider the operator VM : C → C given by:

VM(g)(θ, θ−1, Q) =
ε

ε− 1
logE(θ,θ−1,Q)

[
exp

{
ε−1
ε

1+ψ−α
α

+ 1
ε

(
log

(
1− 1

ε
1+ψ
α

)

− logE(s,Q)

[
exp

{
−1 + ψ

α
log θit

}]
+ logE(s,Q)

[
exp

{(
1

ε
− γ
)
g

}])}]
(68)

The following two conditions are sufficient for this operator to be a contraction: (i) mono-

tonicity: for all g, h ∈ C such that g ≥ h, we have that VM(g) ≥ VM(h) (ii) discounting: there

exists a parameter c ∈ [0, 1) such that for all g ∈ C and a ∈ R+ and VM(g+a) ≤ VM(g) + ca.

Thus, as the space of bounded functions under the L∞-norm is a complete metric space, if

Blackwell’s conditions hold, then by the Banach fixed-point theorem, there exists a unique

fixed point of the operator VM .

To complete this argument, we now verify (i) and (ii). To show monotonicity, observe

that 1
ε
− γ ≥ 0 as ω ≥ 0 and recall that ε > 1. Thus, we have that:

logE(s,Q)

[
exp

{(
1

ε
− γ
)
g

}]
≥ logE(s,Q)

[
exp

{(
1

ε
− γ
)
h

}]
(69)

for all (s,Q). And so VM(g)(θ,Q) ≥ VM(h)(θ,Q) for all (θ,Q). To show discounting, observe

that:

logE(s,Q)

[
exp

{(
1

ε
− γ
)

(g + a)

}]
= logE(s,Q)

[
exp

{(
1

ε
− γ
)
g

}]
+

(
1

ε
− γ
)
a (70)
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And so:

VM(g + a)(θ, θ−1, Q) =
ε

ε− 1
logE(θ,θ−1,Q)

[
exp

{
ε−1
ε

1+ψ−α
α

+ 1
ε

(
log

(
1− 1

ε
1+ψ
α

)

− logE(s,Q)

[
exp

{
−1 + ψ

α
log θit

}]
+ logE(s,Q)

[
exp

{(
1

ε
− γ
)
g

}]
+

(
1

ε
− γ
)
a

)}]
= VM(g)(θ, θ−1, Q) + ωa

(71)

where ω ∈ [0, 1) by assumption. Note that the modulus of contraction ω is precisely

the claimed strategic complementarity parameter in Equation 8. This verifies equilibrium

uniqueness.

Away from the case with bounded fundamentals, the above strategy cannot be used

to demonstrate uniqueness. Even though the fixed-point operator still satisfies Blackwell’s

conditions, the relevant function space now becomes any Lp-space for p ∈ (1,∞) and the

sup-norm over such spaces can be infinite, making Blackwell’s conditions insufficient for V

to be a contraction. In this case, we show that the unique quasi-loglinear equilibrium in the

unbounded fundamentals case is an appropriately-defined ε-equilibrium for any ε > 0. Let

the unique quasi-loglinear equilibrium we have guessed and verified be log Y ∗. We say that

g is a ε-equilibrium if

||g − VM(g)||p < ε (72)

where || · ||p is the Lp-norm. In words, g is a ε-equilibrium if its distance from being a fixed

point is at most ε. The following Lemma establishes that Y ∗ is a ε-equilibrium for bounded

fundamentals for any ε > 0 for some bound M :

Lemma 2. For every ε > 0, there exists an M ∈ N such that log Y ∗ is a ε-equilibrium.

Proof. Now extend from C, VM : Lp(R) → Lp(R) as in Equation 68. We observe that

VM is continuous in the limit in M in the sense that VM(g) → V (g) as M → ∞ for all

g ∈ Lp(R). This observation follows from noting that both logE(s,Q)

[
exp

{
−1+ψ

α
log θit

}]
and logE(s,Q)

[
exp

{(
1
ε
− γ
)
g
}]

are convergent pointwise for M → ∞ for all (s,Q). In

Proposition 1, we showed that V (log Y ∗) = log Y ∗. Thus, we have that: VM(log Y ∗) →
V (log Y ∗) = log Y ∗, which implies that:

lim
M→∞

|| log Y ∗ − VM(log Y ∗)||p = 0 (73)
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which implies that for every ε > 0, there exists a M̄ ∈ N such that:

|| log Y ∗ − VM(log Y ∗)||p < ε ∀M ∈ N : M > M̄ (74)

Completing the proof.

A.3 Proof of Theorem 2

Proof. We prove the three claims in sequence.

(1) The map Tθ : [0, 1]→ [0, 1] is continuous for all θ ∈ Θ as f , PO and PP are continuous

functions. Moreover, it maps a convex and compact set to itself. Thus, by Brouwer’s fixed

point theorem, there exists a Q∗θ such that Q∗θ = Tθ(Q
∗
θ) for all θ ∈ Θ.

(2) To characterize the existence of extremal steady states, observe that Q = 1 is a steady

state for θ if and only if Tθ(1) = PO(ao + (a1 + a2) log θ + f(1), 1, 0) = 1 and Q = 0 is a

steady state for θ if and only if Tθ(0) = PP (a0 + (a1 + a2) log θ, 0, 0) = 0. Thus, Q = 1 is a

steady state if and only if P−1
O (1; 1) ≤ a0 + (a1 + a2) log θ+ f(1) and Q = 0 is a steady state

if and only if P−1
P (0; 0) ≥ a0 + (a1 + a2) log θ. To obtain the result as stated, we re-arrange

these inequalities in terms of log θ and exponentiate.

(3) To analyze the stability of the extremal steady states, observe that if T ′θ(Q
∗) < 1 at

a steady state Q∗, then Q∗ is stable. When it exists (which it does almost everywhere), we

have that:

T ′θ(Q) = PO(a0 + (a1 + a2) log θ + f(Q), Q, 0)− PP (a0 + (a1 + a2) log θ + f(Q), Q, 0)

+Q
d

dQ
PO(a0 + (a1 + a2) log θ + f(Q), Q, 0)

+ (1−Q)
d

dQ
PP (a0 + (a1 + a2) log θ + f(Q), Q, 0)

(75)

Thus, for θ < θP and Q = 0:

T ′θ(0) = PO(a0 + (a1 + a2) log θ, 0, 0)− PP (a0 + (a1 + a2) log θ, 0, 0)

+
d

dQ
PP (a0 + (a1 + a2) log θ + f(Q), Q, 0) |Q=0

= PO(a0 + (a1 + a2) log θ, 0, 0)

(76)

where the second equality follows by observing that all of PP , ∂PP
∂ log Y

, and ∂PP
∂Q

are zero for θ <

θP . Thus, we have that T ′θ(0) < 1 when PO(a0+(a1+a2) log θ, 0, 0) < 1. Moreover, for θ < θP ,

we have that: PO(a0+(a1+a2) log θ, 0, 0) ≤ PO(a0+(a1+a2) log θP , 0, 0) = PO(P−1
P (0; 0), 0, 0).

Thus, a sufficient condition for T ′θ(0) < 1 for θ < θP is that PO(P−1
P (0; 0), 0, 0) < 1.

59



For θ > θO and Q = 1, we have that:

T ′θ(1) = PO(a0 + (a1 + a2) log θ + f(1), 1, 0)− PP (a0 + (a1 + a2) log θ + f(1), 1, 0)

+
d

dQ
PO(a0 + (a1 + a2) log θ + f(1), 1, 0) |Q=1

= 1− PP (a0 + (a1 + a2) log θ + f(1), 1, 0)

(77)

where the second equality follows by observing that PO = 1 and both ∂PO
∂ log Y

and ∂PO
∂Q

are zero

for θ > θO. Hence, we have that T ′θ(1) < 1 when PP (a0 + (a1 + a2) log θ + f(1), 1, 0) > 0.

For θ > θO we have that PP (a0 + (a1 + a2) log θ + f(1), 1, 0) ≥ PP (a0 + (a1 + a2) log θO +

f(1), 1) = PP (P−1
O (1, 1), 1, 0). Thus, a sufficient condition for T ′θ(1) < 1 for θ > θO is that

PP (P−1
O (1, 1), 1, 0) > 0.

A.4 Proof of Corollary 5

Proof. From Equation 52 in the proof of Proposition 1, we have that the log production of

firm i at time t is described in the unique quasi-log-linear equilibrium by:

log xit =
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
[log γi + κsit + (1− κ)µ(λit, θt−1)]

− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)
+ +

1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

+

(
1

ε
− γ
)

[a0 + a1 (κsit + (1− κ)µ(λit, θt−1)) + a2 log θt−1 + f(Qt)]

] (78)

We substitute this expression into the production function to obtain an equation for hiring

logLit = 1
α

(log xit−log θit). Subtracting lagged labor from both sides yields Equation 25.
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B Additional Theoretical Results and Extensions

This appendix covers several additional results and model extensions. First, we provide

formal results on the model’s impulse response functions and its propensity to undergo

boom-bust cycles (B.1). Second, we theoretically characterize and quantify the normative

implications of fluctuations (B.2). Third, we study equilibrium dynamics under a bench-

mark model of Bayesian model updating and contrast these predictions with those obtained

in our main analysis (B.3). Fourth, fifth, sixth, and seventh we extend the baseline model

to respectively incorporate a continuum of different levels of optimism (B.4), models about

idiosyncratic fundamentals (B.5), multi-dimensional models (B.6), and model updating that

depends on idiosyncratic fundamentals (B.7). In each case, we characterize equilibrium

dynamics and show how our main theoretical insights extend. Eighth, we show how endoge-

nous cycles and chaotic dynamics can obtain when agents are contrarian and implement an

empirical test for their presence (B.8).

B.1 Impulse Responses and Stochastic Fluctuations

This Appendix generalizes and formalizes the observations about contagious business cycle

dynamics from Section 3.3.

First, we define two important types of updating rules that satisfy a natural single-

crossing condition. We say that T is strictly single-crossing from above (SSC-A) if for all

θ ∈ Θ there exists Q̂θ ∈ [0, 1] such that Tθ(Q) > Q for all Q ∈ (0, Q̂θ) and Tθ(Q) < Q

for all Q ∈ (Q̂θ, 1). We say that T is strictly single-crossing from below (SSC-B) if for all

θ ∈ Θ there exists Q̂θ ∈ [0, 1] such that Tθ(Q) > Q for all Q ∈ (Q̂θ, 1) and Tθ(Q) < Q for all

Q ∈ (0, Q̂θ). If T is either SSC-A or SSC-B, we say that it is SSC. The left and right panels

of Figure 1 respectively illustrate examples of SSC-A and SSC-B transition maps.

Lemma 3 (Steady States under the SSC Property). If Tθ is SSC, then there exist at most

three deterministic steady states. These correspond to extreme pessimism Q = 0, extreme

optimism Q = 1, and intermediate optimism Q = Q̂θ. Moreover, when Tθ is SSC-A: in-

termediate optimism is stable with a basin of attraction that includes (0, 1); and whenever

extreme optimism or extreme pessimism are steady states that do not coincide with Q̂θ, they

are unstable with respective basins of attraction {0} and {1}. When Tθ is SSC-B: whenever

extreme optimism is a steady state, it is stable with basin of attraction (Q̂θ, 1]; whenever ex-

treme pessimism is a steady state it is stable with basin of attraction [0, Q̂θ); and intermediate

optimism is always unstable with basin of attraction {Q̂θ}.

Proof. Fix θ ∈ Θ. We first study the SSC-A case. By SSC-A of T we have that there exists
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Q̂θ ∈ [0, 1] such that Tθ(Q) > Q for all Q ∈ (0, Q̂θ) and Tθ(Q) < Q for all Q ∈ (Q̂θ, 1). As

Tθ is continuous we have that Tθ(Q̂θ) = Q̂θ. Thus, there exist at most three steady states

Q∗ = 0, Q∗ = Q̂θ, and Q∗ = 1.

To find the basins of attraction of these steady states, fix Q0 ∈ (0, 1) and consider the

sequence {T nθ (Q0)}n∈N. For a steady state Q∗, its basin of attraction is:

Bθ(Q∗) =
{
Q0 ∈ [0, 1] : lim

n→∞
T nθ (Q0) = Q∗

}
(79)

First, consider Q0 ∈ (0, Q̂θ). We now show by induction that T nθ (Q0) ≥ T n−1
θ (Q0) for all

n ∈ N. Consider n = 1. We have that Tθ(Q0) > Q0 as T is SSC-A and Q0 < Q̂θ. Suppose

now that T nθ (Q0) ≥ T n−1
θ (Q0). We have that:

T n+1
θ (Q0) = Tθ ◦ T nθ (Q0) ≥ Tθ ◦ T n−1

θ (Q0) = T nθ (Q0) (80)

by monotonicity of Tθ, which proves the inductive hypothesis. Observe moreover that the

sequence {T nθ (Q0)}n∈N is bounded as T nθ (Q0) ∈ [0, 1] for all n ∈ N. Hence, by the monotone

convergence theorem, limn→∞ T
n
θ (Q0) exists. Toward a contradiction, suppose that Q∞0 =

limn→∞ T
n
θ (Q0) > Q̂θ. By SSC-A of T we have that Tθ(Q

∞
0 ) < Q∞0 , but this contradicts that

Q∞0 = limn→∞ T
n
θ (Q0). Thus, we have that Q∞0 = Q̂θ. Hence, (0, Q̂θ) ⊆ Bθ(Q̂θ). Second,

consider Q0 = Q̂θ. We have that Tθ(Q̂θ) = Q̂θ. Thus, Q∞0 = Q̂θ. Hence, Q̂θ ∈ Bθ(Q̂θ).

Third, consider Q0 ∈ (Q̂θ, 1). Following the arguments of the first part, we have that

(Q̂θ, 1) ⊆ Bθ(Q̂θ). Thus, (0, 1) ⊆ Bθ(Q̂θ). Moreover, if Q = 0 or Q = 1 are steady states,

they can only have basins of attraction in [0, 1]\Bθ(Q̂θ), which implies that they are unstable

and can only have basins of attraction {0} and {1}.
The analysis of the SSC-B case follows similarly. By SSC-B of T we have that there exists

Q̂θ ∈ [0, 1] such that Tθ(Q) > Q for all Q ∈ (Q̂θ, 1) and Tθ(Q) < Q for all Q ∈ (0, Q̂θ). As

Tθ is continuous, we have that Tθ(Q̂θ) = Q̂θ. Thus, there exist at most three steady states

Q∗ = 0, Q∗ = Q̂θ, and Q∗ = 1.

To find the basins of attraction of these steady states, first consider Q0 ∈ (0, Q̂θ). We

now show by induction that T nθ (Q0) ≤ T n−1
θ (Q0) for all n ∈ N. Consider n = 1. We have

that Tθ(Q0) < Q0 as T is SSC-B and Q0 < Q̂θ. Suppose now that T nθ (Q0) ≤ T n−1
θ (Q0). We

have that:

T n+1
θ (Q0) = Tθ ◦ T nθ (Q0) ≤ Tθ ◦ T n−1

θ (Q0) = T nθ (Q0) (81)

by monotonicity of Tθ, which proves the inductive hypothesis. Observe moreover that the

sequence {T nθ (Q0)}n∈N is bounded as T nθ (Q0) ∈ [0, 1] for all n ∈ N. Hence, by the monotone

convergence theorem, limn→∞ T
n
θ (Q0) exists. Finally, toward a contradiction, suppose that
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Q∞0 = limn→∞ T
n
θ (Q0) > 0. By SSC-B of T we have that Tθ(Q

∞
0 ) < Q∞0 , but this contradicts

that Q∞0 = limn→∞ T
n
θ (Q0). Thus, we have that Q∞0 = 0. Hence, [0, Q̂θ) ⊆ Bθ(0). Second,

consider Q0 = Q̂θ. We have that Tθ(Q̂θ) = Q̂θ. Thus, Q∞0 = Q̂θ. Hence Q̂θ ∈ Bθ(Q̂θ). Third,

consider Q0 ∈ (Q̂θ, 1]. By the exact arguments of the first part, we have that (Q̂θ, 1] ⊆ Bθ(1).

Observing Bθ(0), Bθ(Q̂θ), and Bθ(1) are disjoint completes the proof.

In the SSC-A case there is a unique, (almost) globally stable steady state (left panel of

Figure 1). In the SSC-B class, there exists a state-dependent criticality threshold Q̂θ ∈ [0, 1],

below which the economy converges to extreme, self-fulfilling pessimism and above which the

economy converges to extreme, self-fulfilling optimism (right panel of Figure 1). These two

classes delineate two qualitatively different regimes for models dynamics: one with stable

model convergence around a long-run steady state (SSC-A) and one with a strong role for

initial conditions and hysteresis (SSC-B).

We now study how the economy responds to deterministic and stochastic fundamental

and optimism shocks. For this analysis, we restrict attention to the SSC class, noting that

this is an assumption solely on primitives.20

Hump-Shaped and Discontinuous Impulse Responses. We consider the responses of

aggregate output and optimism in the economy to a one-time positive shock to fundamentals

from a steady state corresponding to θ = 1:

θt =


1, t = 0,

θ̂, t = 1,

1, t ≥ 2.

(82)

where θ̂ > 1. We would like to understand when the impulse response to a one-time shock

is hump-shaped, meaning that there exists a t̂ ≥ 2 such that Yt is increasing for t ≤ t̂ and

decreasing thereafter. Moreover, we would like to understand how big a shock needs to be

to send the economy from one steady state to another, as manifested as a discontinuity in

the IRFs in the shock size θ̂. For simplicity, we focus on the case with i.i.d. productivity

shocks in which ρ = 0.

In the SSC-A case, IRFs are continuous in the shock but can nevertheless display hump-

shaped dynamics as a result of the endogenous evolution of optimism.

20This is without a substantive loss of generality as we can always represent any non-SSC Tθ as the
concatenation of a set of restricted functions that are SSC on their respective domains. Concretely, whenever
Tθ is not SSC, we can represent its domain [0, 1] as a collection of intervals {Ij}j∈J such that ∪j∈J Ij = [0, 1]
and the restricted functions Tθ,j : Ij → [0, 1] defined by the property that Tθ,j(Q) = Tθ(Q) for all Q ∈ Ij
are either SSC-A or SSC-B for all j ∈ J . Thus, applying our results to these restricted functions, we have
a complete description of the global dynamics.
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Proposition 1 (SSC-A Impulse Response Functions). In the SSC-A case, suppose that

Q0 = Q̂1 ∈ (0, 1). The impulse response of the economy is given by:

log Yt =


a0 + f(Q̂1), t = 0,

a0 + a1 log θ̂ + f(Q̂1), t = 1,

a0 + f(Qt), t ≥ 2

Qt =


Q̂1, t ≤ 1,

Q2, t = 2,

T1(log Yt−1, Qt−1), t ≥ 3.

(83)

Moreover, Q2 = Q̂1PO(a0 +a1 log θ̂+f(Q̂1), Q̂1, 0)+(1−Q̂1)PP (a0 +a1 log θ̂+f(Q̂1), Q̂1, 0) >

Q̂1, Qt is monotonically declining for all t ≥ 2, and Qt → Q̂1. The IRF is hump-shaped if

and only if θ̂ < exp{(f(Q2)− f(Q̂1))/a1}.

Proof. By Proposition 1 and substituting the form of the shock process from Equation 82,

we obtain the formula for the output IRF. For the fraction of optimists, we see that:

Q2 = Q̂1PO(a0 + a1 log θ̂ + f(Q̂1), Q̂1, 0) + (1− Q̂1)PP (a0 + a1 log θ̂ + f(Q̂1), Q̂1, 0)

> Q̂1PO(a0 + f(Q̂1), Q̂1, 0) + (1− Q̂1)PP (a0 + f(Q̂1), Q̂1, 0) = Q̂1

(84)

and Qt = T1(log Yt−1, Qt−1) for t ≥ 3 by iterating forward. That Qt monotonically declines

to Q̂1 follows from Lemma 3 as we are in the SSC-A case. The hump shape is obtained if

log Y1 ≤ log Y2. This corresponds to

log Y1 = a0 + a1 log θ̂ + f(Q̂1) ≤ a0 + f(Q2) = log Y2 (85)

which rearranges to the desired expression.

All persistence in the IRF of output derives from persistence in the IRF of optimism.

There is a hump in the IRF for output if the boom induced by optimism exceeds the direct

effect of the shock. This contrasts with the SSC-B case, wherein impulse responses can be

discontinuous in the shock size. The following proposition characterizes the IRFs from the

pessimistic steady state; those from the optimistic steady state are analogous.

Proposition 2 (SSC-B Impulse Response Functions). In the SSC-B case, suppose that

θO < 1 < θP and that Q0 = 0. The impulse response of the economy is given by:

log Yt =


a0, t = 0,

a0 + a1 log θ̂, t = 1,

a0 + f(Qt), t ≥ 2

Qt =


0, t ≤ 1,

PP (a0 + a1 log θ̂, 0, 0), t = 2,

T1(log Yt−1, Qt−1), t ≥ 3.

(86)

These impulse responses fall into the following four exhaustive cases:
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1. θ̂ ≤ θP , No Lift-Off: Qt = 0 for all t ∈ N.

2. θ̂ ∈ (θP , θ
∗), Transitory Impact: Qt is monotonically declining for all t ≥ 2 and Qt → 0.

3. θ̂ = θ∗, Permanent (Knife-edge) Impact: Qt = Q̂1 for all t ≥ 1

4. θ̂ > θ∗, Permanent Impact: Qt is monotonically increasing for all t ≥ 2 and Qt → 1

where the critical shock threshold is θ∗ = exp{(P−1
P (Q̂1; 0)− a0)/a1} > θP . In the transitory

case, the output IRF is hump-shaped if and only if θ̂ < exp{f(PP (a0 + a1 log θ̂, 0, 0))/a1}.

Proof. We first derive the IRF functions. The formula for the output IRF follows Proposition

1. For the IRF for the fraction of optimists, we simply observe that Q0 = Q1 = 0 and

Q2 = PP (a0 + a1 log θ̂, 0, 0), and that Qt = T1(Qt−1) for t ≥ 3 by iterating forward.

We now describe the properties of the IRFs as a function of the size of the initial shock

θ̂. First, observe that Q2 = PP (a0 + a1 log θ̂, 0, 0). Thus, we have that Q2 = 0 if and only

if P−1
P (0; 0) ≥ a0 + a1 log θ̂ which holds if and only if θ̂ ≤ θP . For any θ̂ > θP it follows

that Q2 > 0. As we lie in the SSC class, by Lemma 3, we have that the steady states

Q = 0, Q = 1, and Q = Q̂1 have basins of attraction given by [0, Q̂1), (Q̂1, 1], {Q̂1}. Thus, if

Q2 < Q̂1, we have monotone convergence of Qt to 0. If Q2 = Q̂1, then Qt = Q̂t for all t ∈ N.

If Q2 > Q̂1, we have monotone convergence of Qt to 1. Moreover, the threshold for θ̂ such

that Q2 = Q̂∗ is exp
{
P−1
P (Q̂1;0)−a0

a1

}
.

Finally, to find the condition such that the IRF is hump-shaped, we observe that this

occurs if and only if f(Q2) > a1 log θ̂ as Qt is monotonically decreasing for t ≥ 2, which is

precisely the claimed condition.

To understand this result, we first inspect the IRFs. At time t = 0, the economy lies

at a steady state of extreme pessimism with log θ0 = 0 and so log Y0 = a0. At time t = 1,

the one-time productivity shock takes place and output jumps up to log Y1 = a0 + a1 log θ̂

as everyone remains pessimistic. At time t = 2, agents observe that output rose in the

previous period. As a result, a fraction PP (log Y1, 0) of the population becomes optimistic.

For output, the one-time productivity shock has dissipated, so output is now given by its

unshocked baseline a0 plus the equilibrium output effect of optimism f(Q2). From this point,

the IRF evolves deterministically and its long-run behavior depends solely on whether the

fraction that became initially optimistic exceeds the criticality threshold Q̂1 that delineates

the basins of attraction of the steady states of extreme optimism and extreme pessimism.

As a result, productivity shocks have the potential for the following four qualitatively

distinct effects, described in Proposition 2 and illustrated numerically in Figure 10. First, if

a shock is small and no agent is moved toward optimism, the shock has a one-period impact

on aggregate output. Second, if some agents are moved to optimism by the transitory boost

to output but this fraction lies below the criticality threshold, then output steadily declines
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Figure 10: Illustration of IRFs in an SSC-B Case
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Notes: The plots show the deterministic impulse responses of Qt and log Yt in a model calibration
with LAC updating. The four initial conditions correspond to the four cases of Proposition 2.

back to its pessimistic steady-state level as optimism was not sufficiently great to be self-

fulfilling. Third, in the knife-edge case, optimism moves to a new (unstable) steady state

and permanently increases output. Fourth, when enough agents are moved to optimism by

the initial boost to output, then the economy converges to the fully optimistic steady state

and optimism is completely self-fulfilling.

The impulse responses to optimism shocks are identical to those described above. One

can take the formulas in Propositions 1 and 2 from t ≥ 2 and set Q2 equal to the value of

Q that obtains following the optimism shock ε. It follows that the qualitative nature of the

impulse response to an optimism shock is identical to that of a fundamental shock.

Stochastic Boom-Bust Cycles. Having characterized the deterministic impulse prop-

agation mechanisms at work in the economy, we now turn to understand the stochastic

properties of the path of the economy as it is hit by fundamental and optimism shocks. For

simplicity, we once again restrict to the case of i.i.d. fundamentals, in which ρ = 0.

To this end, we analytically study the period of boom and bust cycles: the expected

time that it takes for the economy to move from a state of extreme pessimism to a state of

extreme optimism, and vice versa. Formally, define these expected stopping times as:

TPO = E [min{τ ∈ N : Qτ = 1}|Q0 = 0] , TOP = E [min{τ ∈ N : Qτ = 0}|Q0 = 1] (87)

where the expectation is taken under the true data generating process for the aggregate

component of productivity H, which may or may not coincide with one of the models under
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consideration, and that of the optimism shocks G.

The following result provides sharp upper bounds, in the sense that they are attained for

some (H,G), on these stopping times as a function of deep structural parameters:

Proposition 3 (Period of Boom-Bust Cycles). The expected regime-switching times satisfy

the following inequalities:

TPO ≤
1

1− EG
[
H
(

exp
{
P †P (1;0,ε)−a0

a1

})]
TOP ≤

1

EG
[
H
(

exp
{
P †O(0;1,ε)−a0−f(1)

a1

})] (88)

where P †P (x;Q, ε) = inf{Y : PP (Y,Q, ε) = x} and P †O(x;Q, ε) = sup{Y : PO(Y,Q, ε) = x}.
Moreover, when P †O(0; 1, 0)−P †P (1; 0, 0) ≤ f(1), these bounds are tight in the sense that they

are attained for some processes for fundamentals and optimism shocks (H,G).

Proof. We prove this result by first constructing fictitious processes for optimism that bound

above and below the true optimism process for all realizations of {θt}t∈N before the stopping

time. We can then use this to bound the stopping times’ distributions in the sense of first-

order stochastic dominance and use this fact to bound the expectations.

First, consider the case where we seek to bound τPO = min{t ∈ N : Qt = 1, Q0 = 0}. In

the model, we have that Qt+1 = T (Qt, νt). Fix a path of fundamentals and optimism shocks

{νt}t∈N = {θt, εt}t∈N and define the fictitious Q process as:

Qt+1 = I[T (Qt, νt) = 1] (89)

with Q0 = 0. We prove by induction that Qt ≤ Qt for all t ∈ N. Consider first the base case

that t = 1:

Q1 = I[T (0, ν0) = 1] ≤ T (0, ν0) = Q1 (90)

Toward the inductive hypothesis, suppose that Qt−1 ≤ Qt−1. Then we have that:

Qt = I[T (Qt−1, νt−1) = 1] ≤ I[T (Qt−1, νt−1) = 1] ≤ T (Qt−1, νt−1) = Qt (91)

where the first inequality follows by the property that T (·, ν) is a monotone increasing

function.

As Qt ≤ Qt for all t ∈ N, we have that:

τPO = min{t ∈ N : Qt = 1, Q0 = 0} ≥ min{t ∈ N : Qt = 1, Q0 = 0} = τPO (92)

67



Else, we would have at τPO that QτPO < QτPO
, which is a contradiction.

We now have a pathwise upper bound on τPO. We now characterize the distribution of

the bound. Observe that the possible sample paths for {Qt}t∈N until stopping are given by

the set:

GPO = {(0(n−1), 1)} : n ≥ 1} (93)

Moreover, conditional on Qt−1 = 0, the distribution of Qt is independent of {νs}s≤t−1.

Thus, the fictitious stopping time τPO has a geometric distribution with parameter given by

P[Qt+1 = 1|Qt = 0]. This parameter is given by:

P[Qt+1 = 1|Qt = 0] = P [PP (a0 + a1 log θt, 0, εt) = 1]

= P

[
θt ≥ exp

{
P †P (1; 0, εt)− a0

a1

}]

= 1− EG

[
H

(
exp

{
P †P (1; 0, ε)− a0

a1

})] (94)

Thus, we have established a stronger result and provided a distributional bound on the

stopping time:

τPO ≺FOSD τPO ∼ Geo

(
1− EG

[
H

(
exp

{
P †P (1; 0, ε)− a0

a1

})])
(95)

An immediate corollary is that:

TPO = E[τPO] ≤ E[τPO] =
1

1− EG
[
H
(

exp
{
P †P (1;0,ε)−a0

a1

})] (96)

We can apply appropriately adapted arguments for the other case, where we now define:

Q
t+1

= I[T (Q
t
, νt) 6= 0] (97)

with Q
0

= 1. In this case, by an analogous induction have that Q
t
≥ Qt for all t ∈ N for

all sequences {νt}t∈N. And so, we have that if Q
t

has reached 0 then so too has Qt. The

possible sample paths in this case are:

GOP = {(1(n−1), 0)} : n ≥ 1} (98)
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So again the stopping time has a geometric distribution, this time with parameter:

P[Qt+1 = 0|Qt = 1] = P

[
θt ≤ exp

{
P †O(0; 1, εt)− a0 − f(1)

a1

}]

= EG

[
H

(
exp

{
P †O(0; 1, ε)− a0 − f(1)

a1

})] (99)

And so we have:

TOP ≤
1

EG
[
H
(

exp
{
P †O(0;1,ε)−a0−f(1)

a1

})] (100)

It remains to show that these bounds are tight. To do so, we derive a law H such that

Qt = Qt = Q
t

for all t ∈ N. Concretely, define the set:

Θ∗ =

(
−∞, exp

{
P †O(0; 1, 0)− a0 − f(1)

a1

}]
∪
[

exp

{
P †P (1; 0, 0)− a0

a1

}
,∞
)

(101)

and suppose that θ takes values only in this set, where the two sub-intervals are disjoint

as P †O(0; 1, 0) − P †P (1; 0, 0) ≤ f(1). Moreover, suppose that optimism shocks equal zero

with probability one. In this case, starting from Qt = 1, the only possible values for Qt+1

are zero and one. Moreover, starting from Qt = 0, the only possible values for Qt+1 are

zero and one. Thus, in either case, Qt = Qt = Q
t

pathwise and TOP = T ∗OP and TPO =

T ∗PO. It is worth noting that such a distribution can be obtained by considering a limit of

normal-mixture distributions. Concretely, suppose that H is derived as a mixture of two

normal distributions N(µA, σ
2) and N(µB, σ

2) for µA < exp
{
P †O(0;1,0)−a0−f(1)

a1

}
and µB >

exp
{
P †P (1;0,0)−a0

a1

}
. Taking the limit as σ → 0, the support of H converges to being contained

within Θ∗.

This result establishes that the economy regularly oscillates between times of booms and

busts. We establish this result by postulating fictitious processes for optimism and showing

that they bound, path-by-path, the true optimism process. This enables us to construct

stopping times that dominate the true stopping times in the sense of first-order stochastic

dominance and have expectations that can be computed analytically, thus providing the

claimed bounds. We establish that these bounds are tight by constructing a family of distri-

butions (H,G) such that the fictitious processes coincide always with the true processes.21

21We moreover show that elements of this family can be attained by taking the limit of normal mixtures
with sufficiently dispersed means. Thus, for sufficiently dispersed µO and µP , we can therefore construct
(H,G) for which the bound is attained by taking weighted averages of the optimistic and pessimistic models,
making the uncertainty under each sufficiently small, and eliminating optimism shocks.
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We can provide insights into the determinants of the period of boom-bust cycles from

these analytical bounds. Concretely, consider the bound on the expected time to reach a

bust from a boom. This bound is small when the quantity EG
[
H
(

exp
{
P †P (1;0,ε)−a0

a1

})]
is

large, which happens when there is a fat left tail of fundamentals, when it is relatively easier

for optimists to switch to pessimism as measured by P †O(0; 1, εP ), and when co-ordination

motives are weak as measured by f(1).

B.2 Welfare Implications

In this appendix, we derive the normative implications of contagious models for the economy.

Theory. The following result characterizes welfare along any path for the fraction of opti-

mists in the population and the conditions under which a steady state of extreme optimism

is preferred to one of extreme pessimism:

Proposition 4 (Models and Welfare). For any path of aggregate optimism Q = {Qt}∞t=0,

aggregate welfare is given by

U(Q) = U∗C

∞∑
t=0

βt exp {(1− γ)f(Qt)}

− U∗L
∞∑
t=0

βt (Qt exp{(1 + ψ)d2}+ (1−Qt)) exp {(1 + ψ)d3f(Qt)}
(102)

for some positive constants U∗C, U∗L, d2 and d3 that are provided in the proof of the result.

Thus, there is higher welfare in an optimistic steady state than in a pessimistic steady state

if and only if
U∗C
U∗L
× exp {(1− γ)f(1)} − 1

exp {(1 + ψ)(d2 + d3f(1))} − 1
> 1 (103)

Moreover, when the pessimistic model is correctly specified, extreme optimism is welfare-

equivalent to an ad valorem price subsidy for intermediate goods producers of:

τ ∗ = exp

{
(1− ω)

(
1 + ψ − α

α
+

1

ε

)
f(1)

}
− 1 (104)

Proof. We have that welfare for any path of optimism Q = {Qt}t∈N is given by:

U(Q) =
∞∑
t=0

βt
(
EH
[
Ct(Qt, θt)

1−γ

1− γ

]
− EH

[∫
[0,1]

Lit(γi, sit, Qt)
1+ψ

1 + ψ
di

])
(105)

By market clearing, we have that Ct = Yt for all t. Thus, using the formula for equilibrium
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aggregate output from Proposition 1 and our assumption that log θt is Gaussian under H,

we have that the consumption component of welfare is given by:

EH
[
C1−γ
t (Qt, θt)

1− γ

]
= EH

[
1

1− γ exp {(1− γ) log Y (Qt, θ)}
]

= EH
[

1

1− γ exp {(1− γ) (a0 + a1 log θ + f(Qt))}
]

=
1

1− γ exp

{
(1− γ) (a0 + a1µH + f(Qt)) +

1

2
a2

1σ
2
H

}
=

1

1− γ exp

{
(1− γ) (a0 + a1µH) +

1

2
a2

1σ
2
H

}
exp {(1− γ)f(Qt)}

= U∗C exp {(1− γ)f(Qt)}

(106)

From Proposition 1, we moreover have that labor employed by each firm can be written as:

logLit = d1 log θt + d2λit + d3f(Qt) + vit (107)

where vit is Gaussian and i.i.d. over i. Hence given θ and Qt:∫
[0,1]

Lit(γi, sit, Qt)
1+ψ

1 + ψ
di

=
1

1 + ψ
(Qt exp{(1 + ψ)d2}+ (1−Qt))

× exp

{
(1 + ψ)(d1 log θ + µv + d3f(Qt)) +

1

2
(1 + ψ)2σ2

v

} (108)

Hence, the expectation over θ is given by:

EH
[∫

[0,1]

Lit(γi, sit, Qt)
1+ψ

1 + ψ
di

]
=

1

1 + ψ
(Qt exp{(1 + ψ)d2}+ (1−Qt))

× exp {(1 + ψ)d3f(Qt)} exp

{
(1 + ψ)(d1µH + µv) +

1

2
(1 + ψ)2(σ2

v + d2
1σ

2
H)

}
= U∗L (Qt exp{(1 + ψ)d2}+ (1−Qt)) exp {(1 + ψ)d3f(Qt)}

(109)
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And so total welfare under model path Q is given by:

U(Q) = U∗C

∞∑
t=0

βt exp {(1− γ)f(Qt)}

− U∗L
∞∑
t=0

βt (Qt exp{(1 + ψ)d2}+ (1−Qt)) exp {(1 + ψ)d3f(Qt)}
(110)

The final inequality follows by noting that f(0) = 0 and rearranging this expression.

Now consider the benchmark model but where, without loss of generality, all agents are

pessimistic Qt = 0 and a planner levies an ad valorem subsidy. That is, when the consumer

price is pCit = Y
1
ε
t x
− 1
ε

it , the price received by the producer is pPit = (1 + τ)pCit . Under this

subsidy, each producer’s first-order condition is:

log xit =
1

1+ψ−α
α

+ 1
ε

(
log

(
1− 1

ε
1+ψ
α

)
− logEit

[
exp

{
−1 + ψ

α
log θit

}]

+ logEit
[
exp

{(
1

ε
− γ
)

log Yt

}])
+ Ξ(τ)

(111)

where Ξ(τ) = 1
1+ψ−α

α
+ 1
ε

log(1 + τ). By identical arguments to Proposition 1, we have that

there is a unique quasi-loglinear equilibrium, where:

log Y (θ, τ) = a0 + a1 log θ +
1

1− ωΞ(τ) (112)

and a0 and a1 are as in Proposition 1. Hence, in this equilibrium we have that:

log xit(τ) = log xit(0) +
1

1− ωΞ(τ) (113)

Which implies that:

logLit(τ) = logLit(0) +
1

α

1

1− ωΞ(τ) (114)

And so, welfare under the subsidy τ is given by:

U(τ) = U∗C

∞∑
t=0

βt exp

{
(1− γ)

1

1− ωΞ(τ)

}
− U∗L

∞∑
t=0

βt exp

{
(1 + ψ)d3

1

1− ωΞ(τ)

} (115)
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as d3 = 1
α

. Hence:

U(1) = U(τ ∗) (116)

where τ ∗ is such that 1
1−ωΞ(τ ∗) = f(1). Hence:

τ ∗ = exp

{
(1− ω)

(
1 + ψ − α

α
+

1

ε

)
f(1)

}
− 1 (117)

Completing the proof.

This result sheds light on the potential for non-fundamental optimism to increase aggre-

gate welfare. In the presence of the product market monopoly and labor market monopsony

distortions, intermediate goods firms under-hire labor and under-produce goods. As a result,

if irrational optimism causes them to produce more output, but not so much that the house-

hold over-supplies labor, then it has the potential to be welfare improving. The final part

of the proposition then reduces this question to assessing if the implied optimism-equivalent

subsidy is less than the welfare-optimal subsidy. Thus, optimism in the economy can serve

the role of undoing monopoly frictions and thereby has the potential to be welfare-improving,

even when misspecified.

Quantification. Proposition 4 can be directly applied in our numerical calibration from

Section 6 to calculate the welfare effects of optimism without approximation. We calculate

the average payoff of the representative household under three scenarios. The first cor-

responds to the calibrated model dynamics in simulation, under the assumption that the

pessimistic model is correctly specified.22 The second is a counterfactual scenario with per-

manent extreme optimism, or Qt ≡ 1 for all t. The third is a counterfactual scenario with

permanent extreme pessimism, or Qt ≡ 0 for all t, and an ad valorem subsidy of τ to all

producers. We use the third scenario to translate the first and second into payoff-equivalent

subsidies. We find that both contagious and extreme optimism are welfare-increasing relative

to extreme pessimism in autarky (i.e, τ = 0). In payoff units, they correspond respectively to

equivalent subsidies of 1.33% and 2.59%. Our finding of an overall positive welfare effect for

contagious optimism suggests that, in our macroeconomic calibration, losses from inducing

misallocation are more than compensated by level increases in output.

22Relative to the positive analysis, the normative analysis requires two additional model parameters. We
set the idiosyncratic component of productivity to have unit mean and zero variance.
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B.3 Comparison to the Bayesian Benchmark

Consider an alternative model in which each agent i initially believes the optimistic model is

correct with probability λi0 ∈ (0, 1), and subsequently updates this probability by observing

aggregate output and aggregate optimism and applying Bayes’ rule under rational expecta-

tions. For simplicity, we focus on the case of i.i.d. shocks (ρ = 0). Formally, this corresponds

to the following law of motion for Qt:

Qt+1 =

∫
[0,1]

Pi[µ = µO|{log Yj, Qj}tj=0] di (118)

where Pi[µ = µ0|∅] = λi0 for some λi0 ∈ (0, 1) for all i ∈ [0, 1], and conditional probabilities

are computed under rational expectations with knowledge of {λi0}i∈[0,1]. We define the log-

odds ratio of an agent’s belief as Ωit = log λit
1−λit . The following Proposition characterizes the

dynamics of agents’ subjective models under the Bayesian benchmark:

Proposition 5 (Dynamics under the Bayesian Benchmark). Each agent’s log-odds ratio

follows a random walk with drift, or Ωi,t+1 = Ωit+a+ξt, where a = EH
[

(log θt−µP )2−(log θt−µO)2

σ2

]
and ξt is an i.i.d., mean-zero random variable. The economy converges almost surely to either

extreme optimism (a > 0) or extreme pessimism (a < 0). The dynamics of the economy are

asymptotically described by:

log Yt =

a0 + a1 log θt if a < 0,

a0 + a1 log θt + f(1) if a > 0.
(119)

Thus, the economy does not feature steady state multiplicity, hump-shaped or discontinuous

IRFs, or the possibility for boom-bust cycles.

Proof. The equilibrium Characterization of Proposition 1 still holds. Moreover, Q0 is known

to all agents. Thus, they can identify θ0 as:

θ0 =
log Y0 − a0 − f(Q0)

a1

(120)

Thus, we have that λi1 = P[µ = µO|θ0, λi0]. Moreover, all agents know that Q1 =
∫

[0,1]
λi1 di.

Thus, agents can sequentially identify θt by observing only {Yj}j≤t (and not {Qj}j≤t) by

computing:

θt =
log Yt − a0 − f(Qt)

a1

(121)
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Thus, we can describe the evolution of agents’ beliefs by computing:

λi,t+1 = Pi[µ = µO|{θj}tj=1] = λi,t+1 = Pi[µ = µO|{Yj}tj=1] (122)

By application of Bayes rule, we obtain:

λi,t+1 = P[µ = µO|θt, λi,t] =
fO(θt)λi,t

fO(θt)λi,t + fP (θt)(1− λi,t)
(123)

which implies that:

λi,t+1

1− λi,t+1

=
f(log θt|µ = µO)

f(log θt|µ = µP )

λi,t
1− λi,t

= exp

{
(log θt − µP )2 − (log θt − µO)2

σ2

}
λi,t

1− λi,t

(124)

Defining Ωit = log
λi,t

1−λi,t and a = EH
[

(log θt−µP )2−(log θt−µO)2

σ2

]
and ξt = (log θt−µP )2−(log θt−µO)2

σ2 −
a, we then have that:

Ωi,t+1 = Ωi,t +
(log θt − µP )2 − (log θt − µO)2

σ2

= Ωit + a+ ξt

(125)

which is a random walk with drift, with the drift and stochastic increment claimed in the

statement. Iterating, dividing by t, and applying the law of large numbers, we obtain:

Ωi,t

t
=

1

t
Ωi,0 +

t− 1

t
a+

1

t

t∑
i=1

ξi →a.s. a (126)

Hence, almost surely, we have that Qt → 1 if a > 0 and Qt → 0 if a < 0.

Hence, the dynamics are asymptotically described by Proposition 1 with Qt = 1 if a > 0

and Qt = 0 if a < 0. The resulting properties for output follow immediately from combining

this characterization for Qt with the characterization in our main analysis of equilibrium

output conditional on optimism and fundamentals (Proposition 1), which continues to hold

in the model of this appendix.

The optimist fraction Q converges to either 0 or 1 in the long run because one model

is unambiguously better-fitting, and this will be revealed with infinite data. Moreover, the

log-odds ratio converges linearly and so the odds ratio in favor of the better fitting model

converges exponentially quickly. Thus the Bayesian benchmark model makes a prediction
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that is at odds with our finding of cyclical dynamics for aggregate optimism (Figure A1),

and moreover, in the long run, rules out the features of macroeconomic dynamics that we

derive in Section 3 as consequences of the endogenous evolution of optimism.

B.4 Continuous Models

Our main analysis featured two levels of optimism. However, much of our analysis generalizes

to a setting with a continuum of levels of optimism. For expositional simplicity, in this

section, we abstract from optimism shocks and assume that productivity is i.i.d (ρ = 0).

The model is as in Section 2, but now µ ∈ [µP , µO] and the distribution of models is given

by Qt ∈ ∆([µP , µO]). The probabilistic transition between models is now given by a Markov

kernel P : [µP , µO]×Y ×∆2([µP , µO])→ ∆([µP , µO]) where Pµ′(µ, log Y,Q) is the density of

agents who have model µ who switch to µ′ when aggregate output is Y and the distribution

of models is Q.

Characterizing Equilibrium Output. By modifying the guess-and-verify arguments

that underlie Proposition 1, we can obtain an almost identical representation of equilibrium

aggregate output:

Proposition 6 (Equilibrium Characterization with Continuous Models). There exists a

quasi-loglinear equilibrium:

log Y (log θt, Qt) = a0 + a1 log θt + f(Qt) (127)

Moreover, the density of models evolves according to the following difference equation:

dQt+1(µ′) =

∫ µO

µP

Pµ′(µ, a0 + a1 log θt + f(Qt), Qt)dQt(µ) (128)

Proof. By appropriately modifying the steps of the proof of Proposition 1, the result follows.

Throughout, simply replace λitµO+(1−λit)µP with µ̃it ∼ Qt and λit with µ̃it as appropriate.

The proof follows as written until the aggregation step. At this point, we instead obtain:

log Yt = δt(µP ) +
1

2

ε− 1

ε
σ̂2 +

ε

ε− 1
log

(∫ µO

µP

exp

{
ε− 1

ε
(δt(µ̃)− δt(µP ))

}
dQt(µ̃)

)
(129)

where δt(µP ) = δt(0) and δt(µ̃) − δt(µP ) = αδOP µ̃−µP
µO−µP

. Hence, we have that a0 and a1 are
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as in Proposition 1 and f is instead given by:

f(Q) =
ε
ε−1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

log

(∫ µO

µP

exp

{
ε− 1

ε
αδOP

µ̃− µP
µO − µP

}
dQ(µ̃)

)
(130)

Completing the proof.

Importantly, observe that we still obtain a marginal representation in terms of the partial

equilibrium effect of going from full pessimism to full optimism on hiring δOP , as we have

empirically estimated.

Equilibrium Dynamics. We have seen that a continuum of models poses no difficulty

for the static analysis. The challenge for the dynamic analysis is that the state variable,

the evolution of which is fully characterized by Proposition 6, is now infinite-dimensional.

This notwithstanding, by use of approximation arguments, we can reduce the dynamics to

an essentially identical form to that which we have studied in the main text.

To this end, define the cumulant generating function (CGF) of the cross-sectional distri-

bution of models as:

KQ(τ) = log (EQ[exp{τ µ̃}]) (131)

We therefore have that log (EQ[exp{τ(µ̃− z)}]) = KQ(τ) − τz. It follows by Equation 130

that:

f(Q) =
ε
ε−1

1− ω

[
KQ

(
ε− 1

ε
αδOP

1

µO − µP

)
− ε− 1

ε
αδOP

µP
µO − µP

]
(132)

By Maclaurin series expansion, we can express the CGF to first-order as:

KQ(τ) = µQτ +O(τ 2) (133)

We therefore have that:

f(Q) =
1

1− ωαδ
OP µQ − µP
µO − µP

+O

((
ε− 1

ε
αδOP

1

µO − µP

)2
)

(134)

We now can express the static, general equilibrium effects in terms of mean of the model

distribution. With some abuse of notation, we now write f(µQ) = f(Q). Of course, this

CGF-based approach would allow one to consider higher-order effects through the variance,

skewness, kurtosis, and higher cumulants as desired.

In the next steps, we provide conditions on updating that allow us to express the dy-

namics solely in terms of the mean of the model distribution. To do this, we assume that

Pµ′(µ, log Y,Q) = Pµ′(µ
′′, log Y, µQ) for all Q ∈ ∆2([µP , µO]) and all µ, µ′, µ′′ ∈ [µP , µO].
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This is tantamount to assuming no stubbornness (all agents update the same regardless of

the model they start with) and that contagiousness only matters via the mean. Under this

assumption, we can write Pµ′(log Y (log θ, µQ), µQ) and express the difference equation as:

dQt+1(µ′) =

∫ µO

µP

Pµ′(a0 + a1 log θt + f(µQ,t), µQ,t)dQt(µ)

= Pµ′(a0 + a1 log θt + f(µQ,t), µQ,t)

(135)

It then suffices to take the mean of Qt+1 to express the system in terms of the one-dimensional

state variable µQ,t:

µQ,t+1 = T (µQ,t, θt) =

∫ µO

µP

µ′Pµ′(a0 + a1 log θt + f(µQ,t), µQ,t)dµ
′ (136)

Which is simply a continuous state analog of the difference equation expressed in Corollary

3 expressed in terms of average beliefs.

Steady State Multiplicity. We now obtain the analogous characterization of extremal

steady state multiplicity in this setting, i.e., when it is possible that all agents being maxi-

mally pessimistic and all agents being maximally optimistic are simultaneously deterministic

steady states. To this end, define the following two inverses:

P̂−1(x;µQ) = sup{Y : P (Y,Q) = δx}
P̌−1(x;µQ) = inf{Y : P (Y,Q) = δx}

(137)

where δx denotes the Dirac delta function on x. We define analogous objects to the previous

θO and θP :

θO = exp

{
P̌−1(µO;µO)− a0 − f(1)

a1

}
, θP = exp

{
P̂−1(µP ;µP )− a0

a1

}
(138)

The following result establishes that these thresholds characterize extremal multiplicity:

Proposition 7 (Steady State Multiplicity with Continuous States). Extreme optimism and

pessimism are simultaneously deterministic steady states for θ if and only if θ ∈ [θO, θP ],

which is non-empty if and only if

P̌−1(µO;µO)− P̂−1(µP ;µP ) ≤ f(1) (139)

Proof. This follows exactly the same steps as the proofs of Proposition 2 and Corollary 4,

replacing the appropriate inverses defined above.
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Thus, the same conditions that give rise to multiplicity with binary models obtain with

a continuum of levels of optimism. Indeed, observe that restricting to first-order approx-

imations above was unnecessary. We could have considered an arbitrary order, say k, of

approximation of the CGF and obtained a system of difference equations for the first k cu-

mulants. Proposition 7 would still hold as written, as under the extremal steady states, all

higher cumulants are identically zero and remain so under the provided condition. Naturally,

however, the general dynamics only reduce to those resembling the simple model under the

first-order approximation. Nevertheless, we observe that this is a first-order approximation

to the exact equilibrium dynamics and not simply an approximation of the dynamics of an

approximate equilibrium.

B.5 Models About Idiosyncratic Fundamentals

In the main analysis, we assumed that models described properties of aggregate fundamen-

tals. In this section, we characterize equilibrium dynamics when models describe properties

of idiosyncratic fundamentals. For expositional simplicity, we suppose that productivity

shocks are i.i.d. (or ρ = 0). Concretely, we now instead suppose that all agents believe

that log θt ∼ N(0, σ2), or agree about the distribution of aggregate productivity. More-

over, as in the baseline, all agents believe that others’ idiosyncratic productivity follows

log θ̃jt ∼ N(0, σ2
θ̃
) for all j 6= i. However, agents disagree about the mean of their own id-

iosyncratic productivity: optimistic agents believe that log θ̃it ∼ N(µO, σ
2
θ̃
) while pessimistic

agents believe that log θ̃it ∼ N(µP , σ
2
θ̃
). The rest of the model is identical.

In this context, dynamics are identical conditional on the static relationship between

output and models. Moreover, the static relationship between output and models is now

identical (up to a constant) conditional on estimating the partial equilibrium effect of opti-

mism on hiring. This is formalized by the following result:

Proposition 8 (Equilibrium Characterization with Models About Idiosyncratic Fundamen-

tals). There exists a unique equilibrium such that:

log Y (log θt, Qt) = ã0 + a1 log θt + f̃(Qt) (140)

for coefficients ã0 and a1 > 0, and a strictly increasing function f , where a1 is identical to

that from Proposition 1 and

f̃(Q) =
ε
ε−1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

log

(
1 +Q

[
exp

{
ε− 1

ε
αδ̃OP

}
− 1

])
(141)
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where δ̃OP is defined in Equation 142.

Proof. The proof follows exactly the steps of the proof of Proposition 1 where the ag-

gregate model is replaced with an idiosyncratic one. To be concrete, the computation of

logEit
[
θ
− 1+ψ

α
it

]
and the method of aggregation are identical to those in the proof of Proposi-

tion 1. The only difference is in the computation of logEit
[
Y

1
ε
−γ

t

]
. Now, Equation 49 differs

in that µit = log γi + κsit. Tracking this through to Equation 53, lines 1, 2, 3, and 5 are

identical and line 4 differs only in that the term [λitµO + (1 − λit)µP ] is now set equal to

zero. The analysis then follows up to Equation 58, at which point we have that the exact

formula for δOP changes and is now given by:

αδ̃OP =
1+ψ
α

1+ψ−α
α

+ 1
ε

(µO − µP ) (142)

The formula for δt(0) is identical except for in the second line where the term a1µP is now

equal to zero. The formula for a1 remains the same. Conditional on δ̃OP , the formula for f

remains the same. The formula for a0 is identical except for the second line where the term

(1/ε− γ)a1µP is now equal to zero.

This Proposition makes clear that output differs in this case only up to an intercept

and in changing the mapping from structural parameters to the partial-equilibrium effect of

optimism on hiring. Nonetheless, interpreted via the model above, our empirical exercise

directly identifies the now-relevant parameter δ̃OP . As a result, neither our theoretical nor

quantitative analysis is sensitive to making models be about idiosyncratic conditions. The

only difference is that the point calibrations for κ and (µO − µP ) would change, while the

aggregate dynamics would remain identical.

B.6 Multi-Dimensional Models

Our baseline model featured two models regarding the mean of fundamentals, but we live

in a world of many competing models regarding many aspects of reality. In this extension,

we broaden our analysis to study a class of three-dimensional models, which is essentially

exhaustive within the Gaussian class. For simplicity, we abstract from optimism shocks

in this analysis. Concretely, suppose that agents believe that the aggregate component of

fundamentals follows:

log θt = (1− ρ)µ+ ρ log θt−1 + σνt (143)
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with νt ∼ N(0, 1) and i.i.d.. Models now correspond to a vector of (µ, ρ, σ), indexing the

mean, persistence and variance of the process for fundamentals. The set of models can

therefore be represented by {(µk, ρk, σk)}k∈K. We restrict that agents place Dirac weights on

this set, so that they only ever believe one model at a time, and let Qt,k be the fraction of

agents who believe model (µk, ρk, σk) at time t. Finally, we assume that agents face the same

signal-to-noise ratio κ, regardless of the model that they hold.23 Together, these assumptions

ensure that agents’ posteriors are normal and place a common weight on models when agents

form their expectations of fundamentals.

By modifying the functional guess-and-verify arguments from Proposition 1, we charac-

terize equilibrium output in this setting in the following result:

Proposition 9 (Equilibrium Characterization with Multi-Dimensional Models and Persis-

tence). There exists a quasi-loglinear equilibrium:

log Y (log θt, log θt−1, Qt) = a0 + a1 log θt + a2 log θt−1 + f(Qt, θt−1) (144)

for some a1 > 0, a2 ≥ 0, and f . In this equilibrium, the distribution of models in the

population evolves according to:

Qt+1,k =
∑
k′∈K

Qt,k′Pk′(k, a0 + a1 log θt + a2 log θt−1 + f(Qt, θt−1), Qt) (145)

Proof. We follow the same steps as in the proof of Proposition 1, appropriately adapted to

this richer setting. First, we guess an equilibrium of the form:

log Y (log θt, log θt−1, Qt) = a0 + a1 log θt + a2 log θt−1 + f(Qt, θt−1) (146)

To verify that this is an equilibrium, we need to compute agents’ best replies under this con-

jecture, aggregate them, and show that they are consistent with this guess once aggregated.

We first find agents’ posterior beliefs given model weights. Let E denote the standard

basis for RK with k-th basis vector denoted by

ek = {0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
K−k

} (147)

We have that λit = ek for some k ≤ K. Under this model loading, we have that agent’s

23Formally, this means that the variance of the noise in agents’ signals satisfies σ2
ε,k ∝ σ2

k across models.
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posteriors are given by:

log θit|λit, sit ∼ N
(
log γi + κsit + (1− κ)µ(λit, θt−1), σ2

θ|s(λit) + σ2
θ̃

)
(148)

with:

µ(ek, θt−1) = (1− ρk)µk + ρk log θt−1

σ2
θ|s(ek) =

1
1
σ2
k

+ 1
σ2
ε,k

κ =
1

1 +
σ2
ε,k

σ2
k

(149)

for all k ≤ K,where κ does not depend on k as σ2
ε,k ∝ σ2

k. Hence, we can compute agents’

best replies by evaluating:

logEit
[
θ
− 1+ψ

α
it

]
= −1 + ψ

α
(log γi + κsit + (1− κ)µ(λit, θt−1)) +

1

2

(
1 + ψ

α

)2 (
σ2
θ|s(λit) + σ2

θ̃

)
(150)

logEit
[
Y

1
ε
−γ

t

]
=

(
1

ε
− γ
)

(a0 + a1 (κsit + (1− κ)µ(λit, θt−1)) + a2 log θt−1 + f(Qt, θt−1))

+
1

2

(
1

ε
− γ
)2

a2
1σ

2
θ|s(λit)

(151)

By substituting this into agents’ best replies, we obtain:

log xit =
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
[log γi + κsit + (1− κ)µ(λit, θt−1)]

− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s(λit) + σ2

θ̃

)
+

(
1

ε
− γ
)

[a0 + a1 (κsit + (1− κ)µ(λit, θt−1)) + a2 log θt−1 + f(Qt, θt−1)]

+
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s(λit)

]
(152)

which we observe is conditional normally distributed as log xit|λit ∼ N(δt(λit), σ̂
2) with σ̂2
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as in Equation 54 and:

δt(ek) =
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
[µγ + κ log θt + (1− κ)µ(ek, θt−1)]

− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s(ek) + σ2

θ̃

)
+

(
1

ε
− γ
)

[a0 + a1 (κ log θt + (1− κ)µ(ek, θt−1)) + a2 log θt−1 + f(Qt, θt−1)]

+
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s(ek)

]
(153)

for all k ≤ K. Aggregating these best replies, using Equation 55, we obtain that:

log Yt =
ε

ε− 1
logEt

[
Et
[
exp

{
ε− 1

ε
log xit

}
|λit
]]

=
ε

ε− 1
log

(∑
k

Qt,k exp

{
ε− 1

ε
δt(ek) +

1

2

(
ε− 1

ε

)2

σ̂2

})

= δt(e1) +
1

2

ε− 1

ε
σ̂2 +

ε

ε− 1
log

(∑
k

Qt,k exp

{
ε− 1

ε
(δt(ek)− δt(e1))

}) (154)

where σ̂2 is a constant, δt(e1) depends linearly on log θt and log θt−1 and δt(ek)− δt(e1) does

not depend on log θt for all k ≤ K and can therefore be written as δk1(θt−1). Moreover, by

matching coefficients, we obtain that a1 is the same as in the proof of Proposition 1. And

we find that f must satisfy:

f(Q, θt−1) =
1
ε
− γ

1+ψ−α
α

+ 1
ε

f(Q, θt−1) +
ε

ε− 1
log

(∑
k

Qt,k exp

{
ε− 1

ε
δk1(θt−1)

})
(155)

and so:

f(Q, θt−1) =
ε
ε−1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

log

(∑
k

Qt,k exp

{
ε− 1

ε
δk1(θt−1)

})
(156)

Completing the proof.

In the multidimensional models case with persistence, the past value of fundamentals

interacts non-linearly with the cross-sectional model distribution in affecting aggregate out-

put. However, without more structure, the properties of the dynamics generated by this
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multi-dimensional system are essentially unrestricted.

B.7 Persistent Idiosyncratic Shocks and Belief Updating

We now extend the analysis from Section B.6 to the case where agents’ idiosyncratic states

drive model updating and are persistent. Concretely, in that setting, we let Pk′ depend on

(Yt, Qt, θ̃it) and idiosyncratic productivity shocks evolve according to an AR(1) process:

log θ̃it = ρθ̃ log θ̃i,t−1 + ζit (157)

where 0 < ρθ̃ < 1 and ζit ∼ N(0, σ2
ζ ). We let Fθ̃ denote the stationary distribution of θ̃it,

which coincides with the cross-sectional marginal distribution of θ̃it for all t ∈ N.

The additional theoretical complication these two changes induce is that the marginal

distribution of models Qt is now insufficient for describing aggregate output. This is because

models λit and idiosyncratic fundamentals θ̃it are no longer independent as λit and θ̃it both

depend on θ̃it−1. The relevant state variable is now the joint distribution of models and

idiosyncratic productivity Q̌t ∈ ∆(Λ × R), where Λ indexes the discrete set of models. We

denote the marginals as Qt and Fθ̃, and the conditional distribution of models given θ̃ as

Q̌t,k|θ̃ =
Q̌t,k(θ̃)

fθ̃(θ̃)
.

Proposition 10 (Equilibrium Characterization with Multi-Dimensional Models, Aggregate

and Idiosyncratic Persistence, and Idiosyncratic Model Updating). There exists a quasi-

loglinear equilibrium:

log Y (log θt, log θt−1, Q̌t) = a0 + a1 log θt + a2 log θt−1 + f(Q̌t, θt−1) (158)

for some a1 > 0, a2 ≥ 0, and f .

Proof. This proof follows closely that of Proposition 9. Under Model loading λit, we have

that the agent’s posterior regarding log θit is given by:

log θit|θ̃it−1, λit, sit ∼ N
(

log γi + ρθ̃ log θ̃it−1 + κsit + (1− κ)µ(λit, θt−1), σ2
θ|s(λit) + σ2

ξ

)
(159)

where µ(λit, θt−1), κ, and σ2
θ|s(λit) are as in Proposition 9. Then substitute log γi + ρθ̃θ̃it−1

for log γi and follow the Proof of Proposition 9 until the aggregation step (Equation 154).
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We now instead have that:

log Yt =
ε

ε− 1
logEt

[
Et
[
exp

{
ε− 1

ε
log xit

}
|θ̃it−1, λit

]]
=

ε

ε− 1
logEt

[
exp

{
ε− 1

ε
δt(ek, θ̃it−1) +

1

2

(
ε− 1

ε

)2

σ̂2

}]

=
ε

ε− 1
log

(∫ ∑
k

Q̌t,k|θ̃ exp

{
ε− 1

ε
δt(ek, θ̃) +

1

2

(
ε− 1

ε

)2

σ̂2

}
dFθ̃(θ̃)

)
= δt(e1, 1) +

1

2

ε− 1

ε
σ̂2

+
ε

ε− 1
log

(∫ ∑
k

Q̌t,k|θ̃ exp

{
ε− 1

ε

(
δt(ek, θ̃)− δt(e1, 1)

)}
dFθ̃(θ̃)

)
(160)

Again, σ̂2 is a constant and δt(e1, 0) depends linearly on log θt and log θt−1 and δt(ek, θ̃) −
δt(e1, 1) does not depend on log θt for all k ≤ K. Thus, we may write it as δk1(θt−1, θ̃).

Again, a1 is the same as in Proposition 1. By the same steps as in Proposition 9, we then

have that:

f(Q̌, θt−1) =
ε
ε−1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

log

(∫ ∑
k

Q̌t,k|θ̃ exp

{
ε− 1

ε
δk1(θt−1, θ̃)

}
dFθ̃(θ̃)

)
(161)

Completing the proof.

We can use this result to study the additional effects induced by persistent idiosyncratic

fundamentals. To do this, we restrict to the case of our main analysis with optimism and

pessimism. In this context, we have that:

f(Q̌) =
ε
ε−1

1− ω log

(
Eθ̃

[
Q̌t|θ̃ exp

{
ε− 1

ε
δOP (θ̃)

}
+ (1− Q̌t|θ̃) exp

{
ε− 1

ε
δPP (θ̃)

}])
(162)

where:

δOP (θ̃) = αδOP +
1+ψ
α

1+ψ−α
α

+ 1
ε

ρθ̃ log θ̃

δPP (θ̃) =
1+ψ
α

1+ψ−α
α

+ 1
ε

ρθ̃ log θ̃

(163)
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We define ξ =
1+ψ
α

1+ψ−α
α

+ 1
ε

ρθ̃ and observe that we can write:

Q̌t|θ̃ exp

{
ε− 1

ε
δOP (θ̃)

}
+ (1− Q̌t|θ̃) exp

{
ε− 1

ε
δPP (θ̃)

}
= Qt|θ̃ exp

{
ε− 1

ε

(
αδOP + ξ log θ̃

)}
+ (1−Qt|θ̃) exp

{
ε− 1

ε
ξ log θ̃

}
= Qt|θ̃ exp

{
ε− 1

ε
ξ log θ̃

}[
exp

{
ε− 1

ε
αδOP

}
− 1

]
+ exp

{
ε− 1

ε
ξ log θ̃

} (164)

Taking the expectation of the relevant terms, we obtain:

Eθ̃

[
Q̌t|θ̃ exp

{
ε− 1

ε
δOP (θ̃)

}
+ (1− Q̌t|θ̃) exp

{
ε− 1

ε
δPP (θ̃)

}]
=

[
exp

{
ε− 1

ε
αδOP

}
− 1

]
exp

{
1

2

(
ε− 1

ε
ξ

)2 σ2
ζ

1− ρ2
θ̃

}
Qt

+

[
exp

{
ε− 1

ε
αδOP

}
− 1

]
Covt

(
Qt|θ̃, θ̃

ε−1
ε
ξ
)

+ exp

{
1

2

(
ε− 1

ε
ξ

)2 σ2
ζ

1− ρ2
θ̃

}
(165)

Thus, we have that the contribution of optimism to output is given by:

f(Q̌t) =
ε
ε−1

1− ω log

([
exp

{
ε− 1

ε
αδOP

}
− 1

]
exp

{
1

2

(
ε− 1

ε
ξ

)2 σ2
ζ

1− ρ2
θ̃

}
Qt

+

[
exp

{
ε− 1

ε
αδOP

}
− 1

]
Covt

(
Qt|θ̃, θ̃

ε−1
ε
ξ
)

+ exp

{
1

2

(
ε− 1

ε
ξ

)2 σ2
ζ

1− ρ2
θ̃

})
(166)

We observe that the first term is almost identical to that in our main analysis. This term

is now intermediated by the effect of heterogeneity in previous productivity (to see this,

observe that this vanishes when ρθ̃ = 0). Second, there is a new effect stemming from the

covariance of optimism and productivity. Intuitively, when more optimistic firms are also

more productive, they increase their production by more and this increases output. Finally,

there is a level effect of heterogeneous productivity.

Thus, the sole new qualitative force is the covariance effect. To the extent that this does

not vary with time, it can have no effect on dynamics. We investigate this in the data by
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estimating the regression model

log θ̂it =
2019∑

τ=1995

βτ · (optiτ · I[τ = t]) + χj(i),t + γi + εit (167)

where (χj(i),t, γi) are industry-by-time and firm fixed effects, and βs measures the (within-

industry, within-firm) difference in mean log TFP for optimistic and pessimistic firms in each

year. If the βs vary systematically with the business cycle, then the shifting productivity

composition of optimists over the business cycle is an important component of business-cycle

dynamics.

We plot our coefficient estimates βτ in Figure A11. The estimates are generally positive,

but economically small relative to the large observed variation in TFP, log θit, which has

an in-sample standard deviation of 0.84. Outside of the first two years and last year of the

sample, we find limited evidence of time variation. Moreover, the variation that exists is not

obviously correlated with the business cycle. This suggests that the compositional effect for

optimists driven by model updating in response to idiosyncratic conditions is not, at least

in our data, quantitatively significant.

B.8 Contrarianism, Endogenous Cycles, and Chaos

The baseline model can generate neither endogenous cycles nor chaotic dynamics without

extrinsic shocks to fundamentals (as made formal by Lemma 3). This is because the prob-

ability that agents become optimistic is always increasing in the fraction of optimists in

equilibrium.

In this appendix, we relax this assumption and delineate precise, testable conditions

under which cyclical and chaotic dynamics occur in the absence of fundamental and aggregate

shocks. We do so in a model with “contrarian” agents whose updating contradicts recent

data and/or consensus. Our analysis of endogenous models with contrarianism therefore

complements the literature on endogenous cycles in macroeconomic models (see, e.g., Boldrin

and Woodford, 1990; Beaudry, Galizia, and Portier, 2020) by providing a further potential

micro-foundation for the existence of endogenous cycles.

We begin by defining cycles and chaos. There exists a cycle of period k ∈ N if Q =

T k(Q) and all elements of {Q, T (Q), . . . , T k−1(Q)} are non-equal. We will say that there

are chaotic dynamics if there exists an uncountable set of points S ⊂ [0, 1] such that (i)

for every Q,Q′ ∈ S such that Q 6= Q′, we have that lim supt→∞ |T t(Q) − T t(Q′)| > 0 and

lim inft→∞ |T t(Q) − T t(Q′)| = 0 and (ii) for every Q ∈ S and periodic point Q′ ∈ [0, 1],

lim supt→∞ |T t(Q) − T t(Q′)| > 0. This definition of chaos is due to Li and Yorke (1975)
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and can be understood as saying that there is a large set of points such that the iterated

dynamics starting from any two points in this set get both far apart and vanishingly close.

A Variant Model with the Potential for Cycles and Chaos. We will study the issue

of cycles and chaos under the simplifying assumption that,24 in equilibrium, the induced

probabilities that optimists and pessimists respectively become optimists are quadratic and

given by:25

P̃O(Q) = aO + bOQ− cQ2 , P̃P (Q) = aP + bPQ− cQ2 (168)

with parameters (aO, aP , bO, bP , c) ∈ R5 such that PO([0, 1]), PP ([0, 1]) ⊆ [0, 1]. The parame-

ters aO and aP index stubbornness, bO and bP capture both contagiousness and associative-

ness (through the subsumed equilibrium map), and c captures any non-linearity.

The following result describes the potential dynamics:

Proposition 11. The following statements are true:

1. When P̃O ≥ P̃P and both are monotone, there are neither cycles of any period nor

chaotic dynamics.

2. When P̃O and P̃P are linear, cycles of period 2 are possible, cycles of any period k > 2

are not possible, and chaotic dynamics are not possible.

3. Without further restrictions on P̃O and P̃P , cycles of any period k ∈ N and chaotic

dynamics are possible.

Proof. The dynamics of optimism are characterized by the transition map

T (Q) = Q(aO + bOQ− cQ2) + (1−Q)(aP + bPQ− cQ2)

= aP + (aO − aP + bP )Q− (c+ bP − bO)Q2
(169)

where we define ω0 = aP , ω1 = (aO − aP + bP ), ω2 = (c + bP − bO) for simplicity. We first

show that the dynamics described by T are topologically conjugate to those of the logistic

map Ť (x) = ηx(1− x) with

η = 1 +
√

(aO − aP + bP − 1)2 + 4aP (c+ bP − bO) (170)

24This simplifying assumption is without any qualitative loss as this model can demonstrate the full range
of potential cyclical and chaotic dynamics.

25This can be microfounded in a generalization our earlier LAC model by taking Pi(log Y,Q) = ui +

ri log Y + siQ− cQ2 for i ∈ {O,P} and approximating f(Q) ≈ αδOP

1−ω Q. In this case:

P̃i(Q) = (ui + ria0 + ria1 log θ) +

(
ri
αδOP

1− ω + si

)
Q− cQ2
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Two maps T : [0, 1] → [0, 1] and T ′ : [0, 1] → [0, 1] are topologically conjugate if there

exists a continuous, invertible function h : [0, 1] → [0, 1] such that T ′ ◦ h = h ◦ T . If T is

topologically conjugate to T ′ and we know the orbit of T ′, we can compute the orbit of T

via the formula:

T k(Q) =
(
h−1 ◦ T ′k ◦ h

)
(Q) (171)

Hence, we can prove the properties of interest using known properties of the map Ť as well

as the mapping from the deeper parameters of T to the parameters of Ť .

To show the topological conjugacy of T and Ť , we proceed in three steps:

1. T is topically topologically conjugate to the quadratic map T̂ (Q) = Q2 + k for appro-

priate choice of k. We guess the following homeomorphism ĥ(Q) = α̂+ β̂Q. Plugging

ĥ in T̂ , we have that:

T̂ (ĥ(Q)) = (k + α̂2) + 2α̂β̂Q+ β̂2Q2 (172)

Inverting ĥ and applying it to this expression yields:

ĥ−1(T̂ (ĥ(Q))) =
k + α̂(α̂− 1)

β̂
+ 2α̂Q+ β̂Q2 (173)

To verify topological conjugacy, we need to show that T (Q) = ĥ−1(T̂ (ĥ(Q))). Matching

coefficients, this is the case if and only if:

ω0 =
k + α̂(α̂− 1)

β̂
, ω1 = 2α̂, ω2 = −β̂ (174)

We therefore have that:

k = β̂ω0 + α̂(1− α̂) = −ω2ω0 +
ω1

2

(
1− ω1

2

)
(175)

with ĥ(Q) = ω1

2
− ω2Q.

2. T̂ is topologically conjugate to Ť for appropriate choice of η. We guess the following

homeomorphism ȟ(Q) = α̌ + β̌Q. Plugging ȟ in Ť , we obtain:

Ť (ȟ(Q)) = η
(
α̌(1− α̌) + β̌(1− 2α̌)Q− β̌2Q2

)
(176)

Inverting ȟ and applying it, we obtain:

ȟ−1(Ť (ȟ(Q))) =
ηα̌(1− α̌)− α̌

β̌
+ η(1− 2α̌)Q− ηβ̌Q2 (177)
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Matching coefficients, we find:

k =
ηα̌(1− α̌)− α̌

β̌
, 0 = η(1− 2α̌), 1 = −ηβ̌ (178)

We therefore obtain that:

k = η(α̌− η(1− α̌)) =
η

2

(
1− η

2

)
(179)

which implies that η = 1 +
√

1− 4k with ȟ(Q) = 1
2
− 1

1+
√

1−4k
Q.

3. T is topologically conjugate to Ť for appropriate choice of η. We now compose the

mappings proved in steps 1 and 2 to show

T = ĥ−1 ◦ ȟ−1 ◦ Ť ◦ ȟ ◦ ĥ (180)

with

η = 1 +

√
1− 4

(
−ω2ω0 +

ω1

2

(
1− ω1

2

))
= 1 +

√
(ω1 − 1)2 + 4ω2ω0

= 1 +
√

(aO − aP + bP − 1)2 + 4aP (c+ bP − bO)

(181)

and therefore that T is topologically conjugate to Ť .

Having shown the conjugacy of T to Ť , we now find bounds on η implied by each case

and use this conjugacy to derive the implications for possible dynamics. The following points

prove each claim 1-3 in the original Proposition.

1. P̃O ≥ P̃P and both are monotone. Thus, T is increasing and there cannot be cycles or

chaos. This implies that η < 3 (see Weisstein, 2001, for reference).

2. P̃O and P̃P are linear. It suffices to show that we can attain η > 3 but that η must

be less than 1 +
√

6 (see Weisstein, 2001, for reference). In this case, c = 0. This is

in addition to the requirements that maxQ∈[0,1] P̃i(Q) ≤ 1 and minQ∈[0,1] P̃i(Q) ≥ 0 for

i ∈ {O,P}, which can be expressed as:

max
Q∈[0,1]

P̃i(Q) = max

{
ai, ai + bi − c,

(
ai +

b2
i

4c

)
I[0 ≤ bi ≤ 2c]

}
≤ 1

min
Q∈[0,1]

P̃i(Q) = min{ai, ai + bi − c} ≥ 0
(182)

The maximal value of η consistent with these restrictions can therefore be obtained by
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solving the following program:

max
(aO,aP ,bO,bP )∈R4

(aO − aP + bP − 1)2 + 4aP (bP − bO)

s.t. max {aO, aO + bO} ≤ 1,max {aP , aP + bP} ≤ 1

min{aO, aO + bO} ≥ 0,min{aP , aP + bP} ≥ 0

(183)

Exact solution of this program via Mathematica yields that the maximum value is 5.

This implies that the maximum value of η is 1 +
√

5 ≈ 3.23, which is greater than 3

but less than 1 +
√

6. Moreover, this maximum is attained at aO = 0, aP = 1, bO =

0, bP = −1.

3. No further restrictions on P̃O and P̃P . We can attain η = 4 by setting a0 = aP = 0,

bO = bP = 4, c = 4. Thus, cycles of any period k ∈ N and chaotic dynamics can occur

(see Weisstein, 2001, for reference).

The proof of this result follows a classic approach of recasting a quadratic difference

equation as a logistic difference equation via topological conjugacy (see, e.g., Battaglini,

2021; Deng, Khan, and Mitra, 2022). The restrictions on structural parameters implied by

the hypotheses of the proposition then yield upper bounds on the possible logistic maps and

allow us to characterize the possible dynamics using known results.

To understand this result, observe in our baseline case in which T is monotone that

cycles and chaos are not possible. This is because there is no potential for optimism to

sufficiently overshoot its steady state. By contrast, when P̃O and P̃P are either non-monotone

or non-ranked, two-period cycles can take place where the economy undergoes endogenous

boom-bust cycles with periods of high optimism and high output ushering in periods of low

optimism and low output (and vice versa) as contrarians switch positions and consistently

overshoot the (unstable) steady state. Finally, when P̃O and P̃P are non-linear and non-

monotone, essentially any richness of dynamics can be achieved via erratic movements in

optimism that are extremely sensitive to initial conditions.

An Empirical Test for Cycles and Chaos. Proposition 11 shows how to translate an

updating rule of the form of Equation 168 into predictions about the potential for cycles and

chaos. We now estimate this updating rule in the data to test these predictions empirically.

Concretely, in our panel dataset of firms, we estimate the regression model

optit = α + α1 opti,t−1 + β1opti,t−1 · opti,t−1+

β2(1− opti,t−1) · opti,t−1 + τ (opti,t−1)2 + γi + εit
(184)
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where γi is a firm fixed effect. This model allows the effects of contagiousness to depend on

agents’ previous state. In the mapping to Equation 168, α = aP , α1 = aO − aP , β1 = bO,

β2 = bP , and τ = c. With estimates of each regression parameter, denoted by a hat, we also

obtain an estimate of the logistic map parameter η defined in Equation 170:

η̂ = 1 +

√
(α̂1 + β̂2 − 1)2 + 4α̂(τ̂ + β̂2 − β̂1) (185)

Since η̂ is a nonlinear function of estimated parameters in the regression, we can conduct

inference on η̂ using the delta method. Moreover, this constitutes a test for the possibility

of cycles and chaos in the model by the logic of Proposition 11. Specifically, as described in

the proof of that result, there are two main cases. First, if η < 3, then case 1 of the result

obtains: there are neither cycles of any period nor chaotic dynamics. Second, if η ≥ 3, there

can be cycles of period 2 or more and/or chaos. Moreover, if η > 3.57, chaotic dynamics

obtain.

Our estimates are presented in Table A17. Our point estimate of η is 1.443 and the

95% confidence interval is (0.076, 2.810). This rules out, at the 5% level, the presence of

cycles and/or chaos. The 99% confidence interval is (−0.354, 3.240), which does not rule out

cycles. The p-value for the chaotic dynamics threshold is 0.001. Thus, our results provide

strong evidence against the possibility of chaos due to contagious optimism, and marginally

weaker evidence against the possibility of cycles. This test complements the literature on

endogenous cycles in macroeconomic models (see, e.g., Boldrin and Woodford, 1990; Beaudry

et al., 2020) by providing a micro-founded test within a structural economic model, which

may ameliorate challenges associated with interpreting pure time-series evidence (see, e.g.,

Werning, 2017).

C Additional Details on Textual Data

C.1 Obtaining and Processing 10-Ks

Here, we describe our methodology for obtaining and processing raw data on 10-K filings.

We start with raw html files downloaded directly from the SEC’s EDGAR (Electronic Data

Gathering, Analysis, and Retrieval) system. Each of these files corresponds to a single 10-K

filing. Each file is identified by its unique accession number. In its heading, each file also

contains the end-date for the period the report concerns (e.g., 12/31/2018 for a FY 2018

ending in December), and a CIK (Central Index Key) firm identifier from the SEC. We use

standard linking software provided by Wharton Research Data Services (WRDS) to link CIK
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numbers and fiscal years to the alternative firm identifiers used in data on firm fundamentals

and stock prices. We have, in our original dataset, 182,259 files.

We follow the following steps to turn each document, now identified by firm and year,

into a bag-of-words representation:

1. Cleaning raw text. We first translate the document into unformatted text. Specifically,

we follow the following steps in order:

(a) Removing hyperlinks and other web addresses

(b) Removing html formatting tags encased in the brackets <>

(c) Making all text lowercase

(d) Removing extra spaces, tabs, and new lines.

(e) Removing punctuation

(f) Removing non-alphabetical characters

2. Removing stop words. Following standard practice, we remove “stop words” which are

common in English but do not convey specific meaning in our analysis. We use the

default English stop word list in the nltk Python package. Example stopwords include

articles (“a”,“the”), pronouns (“I”,“my”), prepositions (“in”,“on”), and conjunctions

(“and”,“while”).

3. Lemmatizing documents. Again following standard practice, we use lemmatization

software to reduce words to their common roots. We use the default English-language

lemmatizer of the spacy Python package. The lemmatizer uses both the word’s iden-

tity and its content to transform sentences. For instance, when each is used as a verb,

“meet,” “met,” and “meeting” are commonly lemmatized to “meet.” But if the soft-

ware predicts that “meeting” is used as a noun, it will be lemmatized as the noun

“meeting.”

4. Estimating a bigram model. We estimate a bigram model to group together commonly

co-occurring words as single two-word phrases. We use the phrases function of the

gensim package. The bigram modeler groups together words that are almost always

used together. For instance, if our original text data set were the 10-Ks of public firms

Nestlé and General Mills, the model may determine that “ice” and “cream,” which

almost always appear together, are part of a bigram “ice cream.”

5. Computing the bag of words representation. Having now expressed each document as

a vector of clean words (i.e., single words and bigrams), we simply collapse these data

to frequencies.

Finally, note that our procedure uses all of the non-formatting text in the 10K. This

includes all sections of the documents, and does not limit to the Management Discussion
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and Analysis (MD&A) section. This is motivated by the fact that management’s discussion

is not limited to one section SEC (2011). Moreover, prior literature has found that textual

analysis of the entire 10-K versus the MD&A section tends to closely agree, and that limiting

scope to the MD&A section has limited practical benefits due to the trade-off of limiting the

amount of text per document (Loughran and McDonald, 2011).

C.2 Obtaining and Processing Conference Call Text

We obtain the full text of sales and earnings conference calls from 2002 to 2014 from the Fair

Disclosure (FD) Wire service. The original sample includes 261,034 documents, formatted

as raw text. We next subset to documents that have reported firm names and stock tickers,

which are automatically associated with documents by Lexis Nexis. When matches are

probabilistic, we use the first (highest probability) match.26 We finally restrict to firms that

are listed on one of three US stock exchanges: the NYSE, the NASDAQ, or the NYSE-

MKT (Small Cap). We finally connect tickers to the firm identifiers in our fundamentals

data using the master cross-walk available on Wharton Research Data Services (WRDS).

These operations together reduce the sample size to 158,810 calls. We clean these data by

conducting steps 1-3 described above in Appendix C.1. We then calculate positive word

counts, negative word counts, and optimism exactly as described in the main text for the

10-K data.

C.3 Measuring Positive and Negative Words

To calculate sets of positive and negative 10K words, we use the updated dictionary available

online at McDonald (2021) as of June 2020. This dictionary includes substantial updates

relative to the dictionaries associated with the original Loughran and McDonald (2011)

publication. These changes are reviewed in the Documentation available at McDonald (2021).

The Loughran-McDonald dictionary includes 2345 negative words and 347 positive words.

The dictionary is constructed to include multiple forms of each relevant word. For instance,

the first negative root “abandon” is listed as: “abandon,” “abandoned,” “abandoning,”

“abandonment,” “abandonments,” and “abandons.” To ensure consistency with our own

lemmatization procedure, we first map each unique word to all of its possible lemmas using

the getAllLemmas function of the lemminflect Python package, which is an extension to the

spacy package we use for lemmatization. We then construct a new list of negative words by

combining the original list of negative words with all new, unique lemmas to which a negative

word mapped (and similarly for positive words). This procedure results in new lists of 2411

26In the essentially zero-measure cases in which there is a tie, we take the alphabetically first ticker.
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negative words and 366 positive words, which map exactly to the words that appear in our

cleaned bag of words representation. We list the top ten most common positive and negative

words from this cleaned set in Table A1. In particular, to make the table most legible, we

first associate words with their lemmas, then count the sum of document frequencies for each

associated word (which may exceed one), and then print the most common word associated

with the lemma.
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D Additional Details on Firm Fundamentals Data

D.1 Compustat: Data Selection

Our dataset is Compustat Annual Fundamentals. Our main variables of interest are defined

in Table A18. We restrict the sample to firms based in the United States, reporting statistics

in US Dollars, and present in the “Industrial” dataset. We exclude firms whose 2-digit NAICS

is 52 (Finance and Insurance) or 22 (Utilities). This filter eliminates firms in two industries

that, respectively, may have highly non-standard production technology and non-standard

market structure.

We summarize our definitions of major “input and output” variables in Table A18. For

labor choice, we measure the number of employees. For materials expenditure, we measure

the sum of reported variable costs (cogs) and sales and administrative expense (xsga) net

of depreciation (dp).27 As in Ottonello and Winberry (2020) and Flynn and Sastry (2024),

we use a perpetual inventory method to calculate the value of the capital stock. We start

with the first reported observation of gross value of plant, property, and equipment and

add net investment or the differences in net value of plant, property, and equipment. Note

that, because all subsequent analysis is conditional on industry-by-time fixed effects, it is

redundant at this stage to deflate materials and capital expenditures by industry-specific

deflators.

We categorize the data into 44 sectors. These are defined at the 2-digit NAICS level,

but for the Manufacturing (31-33) and Information (51) sectors, which we classify at the

3-digit level to achieve a better balance of sector size. More summary information about

these industries is provided in Appendix F of Flynn and Sastry (2024).

D.2 Compustat: Calculation of TFP

When calculating firms’ Total Factor Productivity, we restrict attention to a subset of our

sample that fulfils the following inclusion criteria:

1. Sales, material expenditures, and capital stock are strictly positive;

2. Employees exceed 10;

3. Acquisitions as a proportion of assets (aqc over at) does not exceed 0.05.

The first ensures that all companies meaningfully report all variables of interest for our

production function estimation; the second applies a stricter cut-off to eliminate firms that

27A small difference from Flynn and Sastry (2024) is that, in assessing the firms’ costs and later calculating
TFP, we do not “unbundle” materials expenditures on labor and non-labor inputs using supplemental data
on annual wages.
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are very small, and lead to outlier estimates of productivity and choices. The third is a simple

screening device for large acquisitions which may spuriously show up as large innovations in

firm choices and/or productivity.

Our method for recovering total factor productivity is based on cost shares. In brief, we

use cost shares for materials to back out production elasticities, and treat the elasticity of

capital as the implied “residual” given an assumed mark-up µ > 1 (in our baseline, µ = 4/3)

and constant physical returns-to-scale. The exact procedure is the following:

1. For all firms in industry j, calculate the estimated materials share:

ShareM,j′ =

∑
i:j(i)=j′

∑
t MaterialExpenditureit∑

i:j(i)=j′
∑

t Salesit
(186)

2. If ShareM,j′ ≤ µ−1, then set

αM,j′ = µ · ShareM,j′

αK,j′ = 1− αM,j′

(187)

3. Otherwise, adjust shares to match the assumed returns-to-scale, or set

αM,j′ = 1

αK,j′ = 0
(188)

To translate our production function estimates into productivity, we calculate a “Sales

Solow Residual” θ̃it of the following form:

log θ̃it = log Salesit −
1

µ

(
αM,j(i) · log MatExpit + αK,j(i) · log CapStockit

)
(189)

We finally define our estimate log θ̂ as the previous net of industry-by-time fixed effects

log θ̂it = log θ̃it − χj(i),t (190)

Theoretical Interpretation. The aforementioned method recovers physical productivity

(“TFPQ”) under the assumptions, consistent with our quantitative model, that firms operate

constant returns-to-scale technology and face an isoleastic, downward-sloping demand curve

of known elasticity (equivalently, they charge a known markup). The idea is that, given

the known markup, we can impute firms’ (model-consistent) costs as a fixed fraction of

sales and then calculate the theoretically desired cost shares. Here, we describe the simple

mathematics.
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There is a single firm i operating in industry j with technology

Yi = θiM
αj
i K

1−αj
i (191)

They act as a monopolist facing the demand curve

pi = Y
− 1
ε

i (192)

for some inverse elasticity ε > 1. Observe that this is, up to scale, the demand function

faced by monopolistically competitive intermediate goods producers in our model. The

firm’s revenue is therefore piYi = Y
1− 1

ε
i . Finally, the firm can buy materials at industry-

specific price qj and rent capital at rate rj. The firm’s program for profit maximization is

therefore

max
Mi,Ki

{
(θiM

αj
i K

1−αj
i )1− 1

ε − qjMi − rjKi

}
(193)

We first justify our formulas for the input shares (Equation 187). To do this, we solve for

the firm’s optimal input choices. This is a concave problem, in which first-order conditions

are necessary and sufficient. These conditions are

qj = M−1
i αj

(
1− 1

ε

)
(θiM

αj
i K

1−αj
i )1− 1

ε

rj = K−1
i (1− αj)

(
1− 1

ε

)
(θiM

αj
i K

1−αj
i )1− 1

ε

(194)

Re-arranging, and substituting in pi = Y
− 1
ε

i , we derive

αj =
ε

ε− 1

qjMi

piYi

1− αj =
ε

ε− 1

rjKi

piYi

(195)

Or, in words, that the materials elasticity is ε
ε−1

times the ratio of materials input expen-

ditures to sales. Observe also that, by re-arranging the two first-order conditions, we can

write expressions for production and the price

Y =

((
ε− 1

ε

)
θi

(
αj
qj

)α(
1− αj
rj

)1−αj
)ε

⇒ p =

(
ε

ε− 1

)
θ−1
i

(
qj
αj

)αj ( rj
1− αj

)1−αj

(196)

and observe that θ−1
i

(
qj
αj

)αj ( rj
1−αj

)1−αj
is the firm’s marginal cost. Hence, we can define
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µ = ε
ε−1

> 1 as the firm’s markup and write the shares as required:

α = µ
qjMi

piYi
(197)

Finally, we now apply Equations 189 and 190 to calculate productivity. Assume that we

observe materials expenditure qjMi and capital value pK,jKi, where pK,j is an (unobserved)

price of capital. We find

log θ̃i =

(
1− 1

ε

)
(log θi − α log qj − (1− α) log pK,j) (198)

We finally observe that the industry-level means are

χj =

(
1− 1

ε

)(
log θ̄j − α log qj − (1− α) log pK,j

)
(199)

where log θ̄j is the mean of log θi over the industry. Hence,

log θ̂i =

(
1− 1

ε

)(
log θi − log θ̄j

)
(200)

or our measurement captures physical TFP, up to scale and relative to the industry average.
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E Additional Empirical Results

E.1 A Test for Coefficient Stability

Here, we study the bias that may arise from omitted variables in our estimation of the ef-

fect of optimism on hiring, or δOP in Section 5.1, Equation 29, and Table 1. In particular,

we apply the method of Oster (2019) to bound bias in the estimate of δOP under external

assumptions about selection on unobservable variables and to calculate an extent of unob-

servable selection that could be consistent with a point estimate δOP = 0 that corresponds

to our null hypothesis (i.e., “optimism is irrelevant for hiring”). We find that our results are

highly robust by this criterion.

Set-up and Review of Methods. To review, our estimating equation is

∆ logLit = δOPoptit + γi + χj(i),t + τ ′Xit + εit (201)

Hiring and optimism are constructed as described in Section 4, at the level of firms and

fiscal years. We treat firm and industry-by-time fixed effects as baseline controls that are

necessary for interpreting the regression.28 As our main “discretionary” controls, we con-

sider current and past TFP and lagged labor—that is, Xit = {log θ̂it, log θ̂i,t−1, logLi,t−1}.
Under our baseline model, these controls help increase precision, as they are in principle

observable variables that explain hiring (Corollary 5). Thus, in this Appendix, we will study

the regression model in which the fixed effects are partialed out of both the outcome, main

regression, and controls, as indicated below with the ⊥ superscript:

∆ logL⊥it = δOPopt⊥it + τ ′X⊥it + ε⊥it (202)

The essence of the method proposed by Oster (2019), who builds on the approach of

Altonji, Elder, and Taber (2005), is to extrapolate the change in the coefficient in interest

upon the addition of control variables, taking into account the better fit (i.e., additional

R2) from adding the new regressors. To exemplify the logic, consider a case in which we

first estimated Equation 202 without controls, obtaining a coefficient estimate of δ̂OPNC and

an R2 of R̂2
NC , and then estimated the same equation with controls, obtaining a coefficient

estimate of δ̂OPC and an R2 of R̂2
C . Both estimates are restricted to a common sample, for

comparability. If R̂2
C = 1, then (up to estimation error) we might presume that δ̂OPC − δ̂OPNC

estimates the entirety of the theoretically possible omitted variables bias, as there is no

28The latter, in particular, controls for the effect of fundamentals on hiring in our macroeconomic model.
We leverage this interpretation of the biased estimate of δOP from a regression lacking this fixed effect in
Appendix F.4.
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remaining unmodeled variation in hiring. If R̂2
C < 1 and R̂2

C − R̂2
NC is small (i.e., the

controls did not greatly improve fit), then we might presume that the residual still contains

unobserved variables that could contribute toward more bias—in other words, the observed

omitted variables bias δ̂OPC − δ̂OPNC is only a small fraction of what is possible.

To formalize this idea, Oster (2019) introduces two auxiliary parameters: λ (the propor-

tional degree of selection, called δ in the original paper), which controls the relative effect of

observed and unobserved controls on the outcome, and R̄2, which is the maximum achiev-

able fit of the regression with all (possibly bias-inducing) controls, presumed in the example

above to be 1. Conditional on R̄2, Oster (2019) proposes an intuitively reasonable (and, in

special cases and under specific asymptotic arguments, consistent) estimator for the degree

of selection required to induce a zero coefficient, λ̂∗. Conditional on both R̄2 and λ, Oster

(2019) also proposes a bias-corrected coefficient estimator, which is δ̂∗OP in our language.

The key parameter that the researcher has to specify for the first calculation is R̄2: the

proportion of variance in the outcome variable (hiring, net of firm and sector-by-time fixed

effects) that can be explained by factors that correlate with the variable of interest (optimism)

and explain the outcome variable. As the main source of omitted variation that could

influence optimism and hiring is news about fundamentals, we benchmark ˆ̄R2 by estimating

a regression in which we include our base control set Xit = {log θ̂it, log θ̂i,t−1, logLi,t−1} and

control for two years of future fundamentals and labor choice, or

Zit = {log θ̂i,t+1, log θ̂i,t+2, logLi,t+1, logLi,t+2}

This yields ˆ̄R2 = 0.459. Oster (2019) also suggests as a benchmark that R̄2 could be taken

as three times the R2 in the controlled regression. We also report robustness to R̄2
Π = 0.387,

three times the value of R2 = 0.129 that we find in the controlled regression. Thus, our

baseline value of ˆ̄R2 = 0.459 is more demanding than that suggested by Oster (2019).

We finally construct the bias-corrected coefficients assuming λ = 1, or equal selection on

unobservables and observables, for both values of R̄2.

Results. We report the results of this exercise in Table A2. Under our baseline value of
ˆ̄R2 = 0.459, we find that the degree of selection required to induced a zero coefficient is

λ̂∗ = 1.69. This is well above the value of λ̂∗ = 1 that Oster (2019) suggests is likely to be

conservative. Under the “three times R2” benchmark, we obtain that λ̂∗ = 2.15. In both

cases, we are robust to there being more selection on unobservables than on observables.

According to Oster (2019), approximately 50% of the published top-journal articles in their

sample are not robust to this extent of selection.
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E.2 Alternative Empirical Strategy: CEO Change Event Studies

To further isolate variation in the beliefs held by firms that is unrelated to fundamentals, we

study the effects on hiring of changes in beliefs induced by plausibly exogenous managerial

turnover.

Data. To obtain plausibly exogenous variation in beliefs held at the firm level, we will

examine the year-to-year change in firm-level beliefs stemming from plausibly exogenous

CEO changes. To do this, we use the dataset of categorized CEO exits compiled by Gentry

et al. (2021). These data comprise 9,390 CEO turnover events categorized by the reason for

the CEO exit. The categorization was performed using primary sources (e.g., press releases,

newspaper articles, and regulatory filings) by undergraduate students in a computer lab,

supervised by graduate students, with the final dataset checked by both a data outsourcing

company and an additional student. We restrict attention to CEO exists caused by death,

illness, personal issues, and voluntary retirements. Importantly, we exclude all CEO exits

caused by inadequate job performance, quits, and forced retirement.

The Effect of Optimism on Hiring. We first revisit our empirical strategy for measuring

the effect of optimism on firms’ hiring, using the CEO change event studies. For all firms i

and years t such that i’s CEO leaves because of death, illness, personal issues or voluntary

retirements, we estimate the regression equation

∆ logLit = δCEOoptit + ψ opti,t−1 + τ ′Xit + χj(i),t + εit (203)

This differs from our baseline Equation 29 by including parametric controls for lagged values

of the model loadings, but removing a persistent firm fixed effect.29 If the studied CEO

changes are truly exogenous, as we have suggested, then the model loadings of the new CEO

are, conditional on the model loadings of the previous CEO, solely due to the differences in

worldview across these two senior executives. Of course, CEO exits may be disruptive and

reduce firm activity. Any time- and industry-varying effects of CEO exits via disruption are

controlled for by the intercept of the regression χj(i),t, since the equation is estimated only on

the exit events. Moreover, any within-industry, time-varying, and idiosyncratic disruption

is captured through our maintained productivity control. Under this interpretation, the

coefficient of interest δCEO isolates the effect of optimism on hiring purely via the channel

of changing managements’ beliefs.

We present our results in Table A19. We obtain estimates of δCEO that are quantitatively

29With a firm fixed effect, the regression coefficients of interest would be identified only from firms with
multiple plausibly exogenous CEO exits.
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similar to our estimates of δOP in Table 1 (columns 1, 2, and 3). In column 4, we estimate

a regression equation on the full sample that measures the direct effect of CEO changes and

its interaction with the new management’s optimism. Specifically, we estimate

∆ logLit = δNoChangeoptit + δChange(optit × ChangeCEOit) + αChangeChangeCEOit

+ ψ opti,t−1 + τ ′Xit + χj(i),t + εit
(204)

where ChangeCEOit is an indicator for our plausibly exogenous CEO change events. We

find that CEO changes in isolation reduce hiring (αChange < 0) but also that the effect of

optimism is magnified when it accompanies a CEO change (δChange > 0). This is further

inconsistent with a story under which omitted fundamentals lead us to overestimate the

effect of optimism on hiring.

Contagiousness from CEO Change Spillovers. We next leverage changes in within-

sector and peer-set optimism induced by plausibly exogenous CEO changes as instruments for

the level of optimism within these groups. Concretely, we construct an instrument equal to

the contribution toward optimism from firms whose CEOs changed for a plausibly exogenous

reason, or

opt
ceo
j(i),t−1 =

1

|Mj(i),t|
∑

k∈Mc
j(i),t

optk,t−1 (205)

where Mj(i),t is the set of firms in industry j(i) at time t, and M c
j(i),t is the subset that

had plausibly exogenous CEO changes. We construct the peer-set instrument opt
ceo
p(i),t−1

analogously. We use (opt
ceo
j(i),t−1, opt

ceo
p(i),t−1) as instruments for (optj(i),t−1, optp(i),t−1) in the

estimation of Equation 34. We present the corresponding estimates in Table A20. We find

similar point estimates under IV and OLS, although the IV estimates are significantly noisier.

E.3 Measuring Contagiousness via Granular Instrumental Vari-

ables

As an alternative strategy to estimate contagiousness, we apply the methods of Gabaix and

Koijen (2020) to construct “granular variables” that aggregate idiosyncratic variation in

large firms’ model loadings. We find evidence that the idiosyncratic optimistic updating of

large firms induces optimistic updating, a form of contagiousness.

Constructing the Granular Measures. We construct our granular instruments via the

following algorithm. We first estimate a firm-level updating regression that controls non-

parametrically for aggregate trends and parametrically for firm-level conditions. Specifically,
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we estimate

optit = τ ′Xit + χj(i),t + γi + uit (206)

where χj(i),t is an industry-by-time fixed effect (sweeping out industry-specific aggregate

shocks), γi is a firm fixed effect (sweeping out compositional effects), and Xit is the largest

vector of controls used in the analysis of Section 5.1, consisting of: lagged log employment,

current and lagged log TFP, log stock returns, the log book to market ratio, and leverage. We

construct the empirical residuals ûit. To construct the aggregate granular variable, opt
g,sw
t ,

we take a sales-weighted average of these residuals:

opt
g,sw
t =

∑
i

salesit∑
i salesit

ûit (207)

To construct an industry-level granular variable, opt
g,sw
j(i),t, we take the leave-one-out sales-

weighted average of the ûit:

opt
g,sw
j(i),t =

∑
i′:j(i)=j(i′),i′ 6=i

salesi′t∑
i salesi′t

ûi′t (208)

We also construct agggregate and industry (leave-one-out) averages of optit for comparison.

We denote these variables as opt
sw
t and opt

sw
j(i),t, respectively.

Empirical Strategy. At the aggregate level, we first consider a variant of our main model

Equation 33, but with one of the sales-weighted variables Zt ∈ {opt
sw
t , opt

g,sw
t }:

optit = u opti,t−1 + s Zt−1 + r ∆ log Yt−1 + γi + εit (209)

The coefficient s measures contagiousness with respect to the sales-weighted measures of

optimism. We estimate Equation 209 by OLS, and also estimate a version in which the

granular variable opt
g,sw
t is an instrumental variable for the raw sales-weighted average opt

sw
t .

Similarly, at the industry level, we estimate the model

optit = uind opti,t−1 + sind Zj(i),t−1 + rind ∆ log Yj(i),t−1 + γi + χt + εit (210)

for Zj(i),t ∈ {opt
sw
j(i),t, opt

g,sw
j(i),t}. As above, we estimate this first via OLS for each outcome

variable, and then via IV where the granular variable opt
g,sw
j(i),t is an instrument for the raw

sales-weighted average opt
sw
j(i),t.

Results. We present our results in Table A21. First, studying aggregate contagiousness,

we find strong evidence that s > 0 when measured with the raw sales-weighted average or
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its granular component (columns 1 and 2). We moreover find significant evidence of s > 0

in the IV estimation (column 3). Our IV point estimate of ŝ = 0.308 greatly exceeds the

OLS estimate of ŝ = 0.0847.

At the industry level, we find strong evidence of contagiousness via the sales-weighted

measure (column 4). We find imprecise estimates, centered around 0, for contagiousness

measured with the granular variable (column 5) or via the granular IV (column 6). However,

the granular IV estimate is noisily estimated and is not significantly different from the point

estimate of column 4.
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F Additional Details on Model Estimation

In this appendix, we provide complete details on the estimation of the model.

F.1 Normalizations

We begin by making two economically irrelevant normalizations to ease the interpretation

of the results. First, we set a0 = 0. As we are not concerned with the level of output in

the model, this is a harmless normalization. Second, we normalize the updating rules so

that an economy with no productivity shocks and no optimism shocks has an equal fraction

of optimists and pessimists. As we have estimated optimism in the data as being above or

below the time-series average level of optimism, this is also harmless normalization. More

specifically, we update the LAC transition probabilities by introducing a parameter CP :

PH
O (log Y,Q, ε) = [

u

2
+ r log Y + sQ+ CP + ε]10

PH
P (log Y,Q, ε) = [−u

2
+ r log Y + sQ+ CP + ε]10

(211)

And we set CP such that an economy with neutral fundamentals (log θt = log θt−1 = 0),

equal optimists and pessimists (Q = 1/2), and no optimism shocks (ε = 0) continues to have

equal optimists and pessimists. Specifically, this implies CP = 1−s
2
− rf(1/2).

F.2 Estimation Methodology

To calibrate the model, we proceed in four steps.

1. Setting macro parameters. We first set (ε, γ, ψ, α). In Section 6.1 and Table 5, we

describe our baseline method based on matching estimates of the deep parameters from

the literature. We also consider two other strategies as robustness checks. First, to

target estimated fiscal multipliers in the literature, we use the same external calibration

of α (returns to scale) and ε (elasticity of substitution), and set (γ, ψ) to match the

desired multiplier. Since the exact choice of these parameters is arbitrary subject to

obtain the correct multiplier, we normalize γ = 0 and vary only ψ. Second, we match

an estimate of the multiplier implied by our own data and an exact formula for the

omitted variable bias incurred in estimating the effect of optimism on hiring without

controlling for general-equilibrium effects via a time fixed effect. We outline that

strategy for estimating the multiplier in Section F.4 below, and we map this to deep

parameters exactly as described in our method for matching the literature’s estimated

multiplier.
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2. Calibrating the effect of optimism on output. We observe that, conditional on (ε, γ, ψ, α)

and an estimate of δOP , we have identified f(Qt). We take our estimate of δOP from col-

umn 1 in Table 1. This regression identifies δOP for the reasons described in Corollary

5.

3. Calibrating the statistical properties of fundamentals (κ, ρ, σ).

(a) Computing fundamental output. We construct a cyclical component of output,

log Ŷt, as band-pass filtered US real GDP (Baxter and King, 1999).30 We apply our

estimated function f to our measured time series of optimism to get an estimated

optimism component of output. we then calculate

log Ŷ f
t = log Ŷt − f̂(Q̂t) (212)

(b) Estimating the ARMA representation. Using our 24 annual observations of log Ŷ f
t ,

we estimate a Gaussian-errors ARMA(1,1) model via maximum likelihood. Our

point estimates are

log Ŷ f
t − 0.086 log Ŷ f

t = .0078(ζt + .32 νt−1) (213)

This implies ρ = 0.086, a1σ = .0078, and a2σ = .0078 × .32. ρ is therefore

identified immediately.

(c) Calibrating (κ, σ). We search non-linearly for values of (κ, σ) that satisfy a1σ =

0.0078 and a2σ = .0078× 0.32. There is a unique such pair, reported in Table 5,

which also is therefore the maximum likelihood estimate of (κ, σ).

4. Calibrating the updating rule (u, r, s, σ2
ε). The coefficients of the LAC updating model

are estimated in column 1 of Table 3. Conditional on the previous calibration, we set

σ2
ε so that within model Qt has the same standard deviation as the aggregate optimism

time series, which is 0.0533.

F.3 Estimation Details for the Multi-Dimensional Model

We introduce two strategies to measure granular topics. The first is a partially supervised

method that detects firms’ discussion of the nine Perennial Economic Narratives described

by Shiller (2020). The second is an unsupervised Latent Dirichlet Allocation model (Blei

et al., 2003), which flexibly identifies clusters of topics discussed by firms. We then describe

30Specifically, we filter to post-war quarterly US real GDP data (Q1 1947 to Q1 2022). We use a lead-lag
length of 12 quarters, a low period of 6 quarters, and a high period of 32 quarters. We then average these
data to the annual level.

107



how we combine this measurement with LASSO regressions to discipline the key parameters

of the constellation model.

Narrative Identification of Topics. In his book Narrative Economics, Robert Shiller

identifies a set of nine Perennial Economic Narratives that recur throughout American his-

tory. These are: Panic versus Confidence; Frugality versus Conspicuous Consumption; The

Gold Standard versus Bimetallism; Labor-Saving Machines Replace Many Jobs; Automation

and Artificial Intelligence Replace Almost All Jobs; Real Estate Booms and Busts; Stock

Market Bubbles; Boycotts, Profiteers, and Evil Businesses; and The Wage-Price Spiral and

Evil Labor Unions. We quantify US firms’ adoption of these narratives by measuring the

similarity of the firms’ language with the language Shiller uses to describe each narrative.

This method “narratively identifies narratives” because it uses prior knowledge from Shiller’s

historical study to inform our approach.

Formally, we use a “tf-idf” method related to prior work by Hassan, Hollander, Van Lent,

and Tahoun (2019) and Flynn and Sastry (2024). For each narrative k, we first compute

the term-frequency-inverse-document-frequency (tf-idf) score to obtain a set of words most

indicative of that narrative:

tf-idf(w)k = tf(w)k × log

(
1

df(w)

)
(214)

where tf(w)k is the number of times that word w appears in the chapter corresponding to

narrative k in Narrative Economics and df(w) is the fraction of 10-K documents containing

the word. Intuitively, if a word has a higher tf-idf score, it is common in Shiller’s description

of a narrative but relatively uncommon in 10-K filings. We define the set of 100 words with

the highest tf-idf score for narrative k as Wk. We print the twenty most common words in

each Wk in Table A14.

We initially score document (i, t) for narrative k by the total frequency of narrative words:

Ŝhiller
k

it =
∑
w∈Wk

tf(w)it (215)

We then compute a binary measure of narrative adoption by comparing to the in-sample

median: Shillerkit = I[Ŝhiller
k

it > med(Ŝhiller
k

it)]. In Figure A9, we plot the raw time series

for the aggregate variable corresponding to each chapter’s narrative.

Unsupervised Recovery of Narratives via LDA. While “narrative identification” may

help us focus on an ex ante reasonable set of topics, this method will invariably miss other

topics—for example, those that pertain more heavily to our sample period than to the
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broader sweep of US economic history studied by Shiller. To identify topics without relying

on external references, we apply Latent Dirichlet Allocation (LDA), a hierarchical Bayesian

model in which documents are constructed by combining a low-dimensional, latent set of

topics (Blei et al., 2003). The topics themselves are characterized co-occurring words. To

estimate the LDA, we use the Gensim implementation of the variational Bayes algorithm

of Hoffman, Bach, and Blei (2010), which makes estimation of LDA on our large dataset

feasible when standard Markov Chain Monte Carlo methods would be slow.31 We estimate a

model with 100 topics. In Table A15, we print the top ten terms associated with each of our

estimated topics. Given the estimated LDA, we construct the document-level topic score as

the posterior probability of that topic in the estimated document-specific topic distribution

p̂:

t̂opic
k

it = p̂(k|dit) (216)

We then compute a binary measure of topic discussion by comparing to the in-sample median:

topickit = I[t̂opic
k

it > med(t̂opic
k

it)].

F.4 Estimating a Demand Multiplier in Our Empirical Setting

Here, we describe a method for estimating a demand multiplier in our data on optimism and

firm hiring. This circumvents the step of external calibration for the multiplier, but relies on

correct specification of the time-series correlates of aggregate optimism. Reassuringly, this

method yields a general-equilibrium demand multiplier that is comparable to our baseline

calibration and our literature-derived calibration.

Mapping the Model to Data. By Corollary 5, we first recall that firms’ hiring can be

written in equilibrium as

∆ logLit = c̃0,i+ c̃10 log θt+ c̃11 log θt−1 + c̃2f(Qt)+ c̃3 log θit+ c̃4 logLi,t−1 +δOPλit+ζit (217)

where ζit is an i.i.d. normal random variable with zero mean and λit is the indicator for

having adopted the optimistic model.

In the data, our estimating equation without control variables had the following form

∆ logLit = γi + χj(i),t + δOPoptit + zit (218)

This maps to the structural model with γi = c̃0,i, χj(i),t = c̃10 log θt+c̃11 log θt−1+c̃2f(Qt), and

zit = ζit + c̃3 log θit + c̃4 logLi,t−1. Under the model-implied hypothesis that E[zitoptit] = 0,

31For computational reasons, we estimate the model using all available documents from a randomly sam-
pled 10,000 of our 37,684 unique possible firms. We score all documents with this estimated model.
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then the OLS regression of ∆ logLit on optit, conditional on the indicated fixed effects,

identifies δOP .

We consider now an alternative regression equation which is a variant of the above spec-

ification without the time fixed effect and with parametric controls for aggregate TFP:

∆ logLit = γi + δOPoptit + c̃10 log θt + c̃11 log θt−1 + z̃it (219)

Observe that the new residual, relative to the old residual, is contaminated by the equilibrium

effect of optimism. That is, z̃it = zit + c̃2f(Qt). To refine this further, we apply the linear

approximation f(Qt) ≈ αδOP

1−ω Qt and the observation that c̃2 = ω, so we can write z̃it =

zit + αω
1−ωδ

OPQt.

We now derive a formula for omitted variables bias in the estimate of δOP from an OLS

estimation of Equation 219. Let X denote a finite-dimensional matrix of data on optit, firm-

level indicators (i.e., the regressors corresponding to the firm fixed effects), and current and

lagged aggregate TFP. Similarly, let Y be a finite-dimensional matrix of data on ∆ logLit.

The OLS regression coefficient in this finite sample is δ̂ = ((X ′X)−1X ′Y )1. Using the

standard formula for omitted variables bias:

E[δ̂|X] = δOP +

(
(X ′X)−1E[X ′Q|X]

αω

1− ωδ
OP

)
1

= δOP
(

1 +
αω

1− ω
(
(X ′X)−1E[X ′Q|X]

)
1

) (220)

where Q is the vector of observations of Qt. We can then observe that:

(X ′X)−1E[X ′Q|X] = E
[
(X ′X)−1X ′Q|X

]
(221)

Which is the (expected) OLS estimate of β in the following regression:

Qt = γi + βQOoptit + βQθ log θt + βQθ−1
log θt−1 + εt (222)

In the population, γi = βQθ = βQθ−1
= 0 and βQO = 1. Thus, ((X ′X)−1E[X ′Q|X])1 = 1. We

therefore obtain that:

E[δ̂ | X] = δOP
(

1 +
αω

1− ω

)
(223)

Hence, given a population estimate of the biased OLS estimate and an external calibra-

tion of α, we can pin down the complementarity ω and the multiplier 1
1−ω . Naturally this

strategy relies on correctly measuring aggregate TFP as measurement error in that variable

would contaminate this estimation. Moreover, it requires us to assume that all variation in
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aggregate output that is not due to TFP is due to optimism or forces entirely orthogonal

to optimism; in view of our running assumption that the spread of optimism is associative,

these other forces therefore also have to be completely transitory, lest they be incorporated

into current optimism via associative updating in a previous period. These assumptions

are strong and are why we do not adopt this strategy for our main quantitative analysis.

Nevertheless, we will find similar results, as we now describe.

Empirical Application and Results. To operationalize this in practice, we compare es-

timates of Equation 218 and 219. For the latter, we proxy TFP using the cyclical component

of both capacity adjusted and capacity un-adjusted TFP using the data of Fernald (2014).32

We moreover maintain the assumption of α = 1, or constant returns to scale, to map our

estimates back to implied multipliers.

Our results are reported in Table A23, along with the associated values of complementar-

ity ω and the multiplier 1
1−ω . Using capacity-adjusted and unadjusted TFP, we respectively

obtain estimates of 1.46 and 1.37 for the multiplier. These are lower than our baseline

estimate, but comparable to our estimates based on structural modeling in the literature.

Both estimates are below our baseline calibration of 1.96 but above our multiplier-literature

calibration of 1.33. In Table A16, we report our quantitative results under the assumed

multiplier of 1.46. We find that, as expected, these estimates imply an role for optimism

that is an intermediate between the baseline and multiplier-literature calibrations.

32Mirroring our filtering of US real GDP, we apply the Baxter and King (1999) band-pass filter to post-war
quarterly data using a lead-lag length of 12 quarters, a low period of 6 quarters, and a high period of 32
quarters. We then average these data to the annual level.
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G Additional Figures and Tables

Figure A1: The Time Series of Optimism
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Notes: The plotted variable is the fraction of optimistic firms in each fiscal year. By construction,
half of the firm-year observations in our sample are coded as optimistic. Section 4.2 describes our
measurement strategy in full detail.

Figure A2: Language Matters for Capital Investment Conditional on Beliefs
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Controlling for Managerial
Sales Guidance

N = 3,639

Controlling for Managerial
CapX Guidance

N = 7,508

Controlling for Analyst
LTG Forecasts

N = 32,065

Baseline With Control Baseline With Control Baseline With Control

Notes: The regression model is Equation 29, the outcome is the change in firms’ log capital stock
from year t − 1 to t, the main regressor is a binary indicator for optimism, and all specifications
include firm and industry-by-time fixed effects. In each panel, we add a different control variable
measuring beliefs: managerial guidance for sales growth (log of guidance value minus log of last
year’s sales), managerial guidance for capital expenditures growth (log of guidance value minus log of
last year’s capital expenditures), and analysts’ long-term growth forecasts (both contemporaneous
and first lag). The two bars show the coefficient on optimism on a common sample without and
with the controls, respectively. In all specifications, we trim the 1% and 99% tails of the outcome
variable. Error bars are 95% confidence intervals based on standard errors clustered by firm ID.
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Figure A3: Net Sentiment and Hiring
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Notes: In each panel, we show estimates from the regression ∆ logLit =
∑10

q=1 βq · (sentimentiqt) +
τ ′Xit + γi + χj(i),t + εit, where sentimentiqt indicates decile q of the continuous sentiment variable.
Panel (a) estimates this equation without controls (like column 1 of Table 1); panel (b) adds controls
for lagged labor and current and lagged log TFP (like column 2 of Table 1); and panel (c) adds
controls for the log book to market ratio, log stock return, and leverage (like column 3 of Table
1). The excluded category in each regression is the first decile of sentimentit. In all specifications,
we trim the 1% and 99% tails of the outcome variable. Error bars are 95% confidence intervals.
Standard errors are double-clustered by firm ID and industry-year.
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Figure A4: Dynamic Relationship between Optimism and Firm Fundamentals, Conference-
Call Measurement
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Notes: The regression model is Equation 31 (as in Figure 5), but measuring optimism from sales
and earnings conference calls. Each coefficient is estimated from a separate projection regression.
The outcomes are (a) the log change in TFP, calculated as described in Appendix D.2, (b) the log
stock return inclusive of dividends over the fiscal year, and (c) changes in profitability, defined as
earnings before interest and taxes (EBIT) as a fraction of the previous fiscal year’s variable costs.
In all specifications, we trim the 1% and 99% tails of the outcome variable. Each coefficient is
estimated from a separate projection regression. Error bars are 95% confidence intervals.
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Figure A5: Dynamic Relationship Between Optimism and Financial Variables
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(d): ∆ Payout Ratio
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Notes: The regression model is Equation 31 (as in Figure 5), but with financial fundamentals as
outcomes. Each dot shows the coefficient on binary optimism from a separate projection regression.
The outcome variables are: (a) the fiscal-year-to-fiscal-year difference in leverage, which is total debt
(short-term debt plus long-term debt); (b) sale of common and preferred stock minus buybacks,
normalized by the total equity outstanding in the previous fiscal year; (c) short-term debt plus long-
term debt issuance, normalized by the total debt in the previous fiscal year; (d) total dividends
divided by earnings before interest and taxes (EBIT); and (e) squared stock returns (volatility).
In all specifications, we trim the 1% and 99% tails of the outcome variable. Error bars are 95%
confidence intervals. Standard errors are two-way clustered by firm ID and industry-year.
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Figure A6: Fundamental and Optimism Shocks That Explain US GDP
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Notes: This figure shows the shocks that rationalize movements in optimism and detrended real
GDP in recent US history, as analyzed in Section 6.2. The solid line is the exogenous process for
fundamental output and the dashed line is the sequence of optimism shocks. The dashed line is
rescaled by δOP (1− ω)−1 to be, up to linear approximation of f , in units of output.

Figure A7: Variance Decomposition for Different Values of Stubbornness and Contagious-
ness, No Optimism Shocks

Notes: This Figure replicates Figure 8, with a different color bar scale, in the variant model with
no exogenous shocks to optimism. Calculations vary u and s, holding fixed all other parameters at
their calibrated values. The shading corresponds to the fraction of variance explained by optimism,
or Share of Variance Explained0 defined in Equation 38. The plus is our calibrated value of (u, s),
corresponding to a variance share 4.7%, and the dotted line is the boundary of a 95% confidence
set. The dashed line is the condition of extremal multiplicity from Corollary 4 and Equation 22.
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Figure A8: Tendency Toward Extremal Optimism

Notes: This Figure plots, in color, the fraction of time that optimism Qt lies outside of the range
[0.25, 0.75] and therefore concentrates at extreme values. Calculations vary u and s, holding fixed all
other parameters at their calibrated values. The plus is our calibrated value of (u, s), corresponding
to an extremal share of 0%, and the dotted line is the boundary of a 95% confidence set. The dashed
line is the condition of extremal multiplicity from Corollary 4 and Equation 22.
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Figure A9: Time Series for Shiller’s Perennial Economic Narratives
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Notes: Each panel plots the time-series average of the narrative variable defined for the corre-
sponding chapter of Shiller (2020)’s Narrative Economics. The units are cross-sectional averages
of z-score transformed variables.
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Figure A10: Optimism and Output Variance in the Constellations Model
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Notes: This figure recreates Figure 7 in the model with constellations. The left panel plots the
fraction of variance, one-year autocovariance, and two-year autocovariance explained by endogenous
optimism in model simulations. The right panel plots the total non-fundamental autocovariance. In
each figure, we plot results under three model scenarios: the baseline model with optimism shocks
and optimism dynamics (blue), a variant model with no shocks, or σ2

ε,k = 0 for all k (orange), and a

variant model with shocks but no dynamics for model spread, or uk = rk = sk = 0 for all k (green).

Figure A11: Time-Varying Relationship Between Optimism and TFP
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Notes: Each dot is a coefficient βτ estimated from Equation 167, corresponding to a year-specific
effect of binary optimism (optit) on log TFP (log θ̂it). The outcome variable is firm-level log TFP,
log θit, and the regressors are indicators for binary optimism interacted with year dummies. In the
regression, we trim the 1% and 99% tails of the outcome variable. Error bars are 95% confidence
intervals, based on standard errors clustered by firm and industry-time.
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Table A1: The Twenty Most Common Positive and Negative Words

Positive Negative
well loss
good decline

benefit disclose
high subject
gain terminate

advance omit
achieve defer
improve claim

improvement concern
opportunity default

satisfy limitation
lead delay

enhance deficiency
enable fail
able losses
best damage
gains weakness

improvements adversely
opportunities against

resolve impairment

Notes: The twenty most common lemmatized words among the 230 positive words and 1354 neg-
ative words. They are listed in the order of their document frequency. The words are taken from
the Loughran and McDonald (2011) dictionary, as described in Section 4.2.
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Table A2: Robustness to Assumptions About Unobserved Selection When Estimating the
Effect of Optimism on Hiring

Panel A: Regression Estimates

(1) (2)
Outcome is ∆L⊥it

opt⊥it 0.0373 0.0305
Controls X

N 39,298 39,298
R2 0.005 0.129

Panel B: Oster (2019) Statistics

(1) (2)
R̄2 is

ˆ̄R2 = 0.459 R̄2
Π = 0.387

λ∗ (δOP = 0) 1.691 2.151
δ∗OP (λ = 1) 0.0126 0.0165

Notes: This table summarizes the coefficient stability test described in Appendix E.1. Panel A
shows estimates of Equation 202, with and without controls for current and lagged log TFP and
lagged log labor. The estimate in column 1 differs from that in column 1 of Table 1 due to restricting
to a common sample in columns 1 and 2. The R2 values are for the model after partialing out
fixed effects, and hence correspond with unreported “within-R2” values in Table 1. Panel B prints
the two statistics of Oster (2019). In column 1, we set R̄2 equal to our estimated value of 0.459,
calculated as described in the text from an “over-controlled” regression of current hiring on lagged
controls and future hiring and productivity. In column 2, we use R̄2 given by three times the R2

in the controlled hiring regression. The first row (λ∗ (δOP = 0)) reports the degree of proportional
selection that would generate a null coefficient. The second row (δ∗OP (λ = 1)) is the bias corrected
effect assuming that unobservable controls have the same proportional effect as observable controls.

121



Table A3: Optimism Predicts Hiring, With More Adjustment-Cost Controls

(1) (2) (3) (4)
Outcome is ∆ logLit

optit 0.0305 0.0257 0.0235 0.0184
(0.0030) (0.0034) (0.0037) (0.0039)

Firm FE X X X X
Industry-by-time FE X X X X
logLi,t−1 X X X X
(log θ̂it, log θ̂i,t−1) X X X X
(logLi,t−2, log θ̂i,t−2) X X X
(logLi,t−3, log θ̂i,t−3) X X
Log Book to Market X
Stock Return X
Leverage X
N 39,298 31,236 25,156 21,913
R2 0.401 0.395 0.396 0.415

Notes: The regression model is Equation 29. Column 1 replicates column 2 of Table 1. Columns 2
and 3 add more lags of firm-level log employment and firm-level log TFP, and column 4 introduces
the baseline financial controls (i.e., those in column 3 of Table 1). In all specifications, we trim the
1% and 99% tails of the outcome variable. Standard errors are two-way clustered by firm ID and
industry-year.
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Table A4: Optimism Predicts Hiring, Alternative Standard Errors

(1) (2) (3) (4) (5)
Outcome is

∆ logLit ∆ logLi,t+1

optit 0.0355 0.0305 0.0250 0.0322 0.0216
(0.0030) (0.0030) (0.0032) (0.0028) (0.0037)
[0.0031] [0.0026] [0.0031] [0.0040] [0.0034]
{0.0035} {0.0026} {0.0025} {0.0043} {0.0036}

Firm FE X X X X
Industry-by-time FE X X X X X
Lag labor X X X X
Current and lag TFP X X X X
Log Book to Market X
Stock Return X
Leverage X
N 71,161 39,298 33,589 40,580 38,402
R2 0.259 0.401 0.419 0.142 0.398

Notes: This Table replicates the analysis of Table 1 with alternative standard error constructions.
Standard errors in parentheses are two-way clustered by firm ID and industry-year; those in square
brackets are two-way clustered by firm ID and year; and those in braces are two-way clustered by
industry and year. For columns 1-4, the regression model is Equation 29 and the outcome is the
log change in firms’ employment from year t− 1 to t. The main regressor is a binary indicator for
optimism, defined in Section 4.2. In all specifications, we trim the 1% and 99% tails of the outcome
variable. In column 5, the regression model is Equation 30, the outcome is the log change in firms’
employment from year t to t+ 1, and control variables are dated t+ 1.
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Table A5: Optimism Predicts Hiring, Instrumenting With Lag

(1) (2) (3) (4)
Outcome is ∆ logLit

optit 0.0925 0.106 0.102 0.0470
(0.0130) (0.0160) (0.0168) (0.0053)

Firm FE X X X
Industry-by-time FE X X X X
Lag labor X X X
Current and lag TFP X X X
Log Book to Market X
Stock Return X
Leverage X
N 63,302 35,768 31,071 36,953
First-stage F 773 478 366 3,597

Notes: All columns come from a two-stage-least-squares (2SLS) estimate of Equation 29, using
opti,t−1 as an instrument for optit. Specifically, the structural equation is

∆ logLit = δOP · optit + γi + χj(i),t + τ ′Xit + εit

the endogenous variable is optit and the excluded instrument is opti,t−1. In the last row, we report
the first-stage F statistic associated with this equation. In all specifications, we trim the 1% and
99% tails of the outcome variable. Standard errors are two-way clustered by firm ID and industry-
year.
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Table A6: Optimism Predicts Hiring, Conference-Call Measurement

(1) (2) (3) (4) (5)
Outcome is

∆ logLit ∆ logLi,t+1

optCCit 0.0277 0.0173 0.0121 0.0237 0.0123
(0.0038) (0.0040) (0.0038) (0.0038) (0.0044)

Industry-by-time FE X X X X X
Firm FE X X X X
Lag labor X X X X
Current and lag TFP X X X X
Log Book to Market X
Stock Return X
Leverage X
N 19,625 11,565 10,851 11,919 11,416
R2 0.300 0.461 0.467 0.172 0.429

Notes: The regression models are identical to those reported in Table 1, but using the measurement
of optimism from sales and earnings conference calls. In all specifications, we trim the 1% and 99%
tails of the outcome variable. Standard errors are two-way clustered by firm ID and industry-year.
In column 5, control variables are dated t+ 1.

Table A7: The Effect of Optimism on All Inputs

(1) (2) (3) (4) (5) (6)
Outcome is

∆ logLit ∆ logMit ∆ logKit

optit 0.0355 0.0305 0.0397 0.0193 0.0370 0.0273
(0.0030) (0.0030) (0.0034) (0.0033) (0.0034) (0.0036)

Industry-by-time FE X X X X X X
Firm FE X X X X X X
Lag input X X X
Current and lag TFP X X X
N 71,161 39,298 66,574 39,366 68,864 36,005
R2 0.259 0.401 0.298 0.418 0.276 0.383

Notes: ∆ logMt is the log difference of all variable cost expenditures (“materials”), the sum of cost
of goods sold (COGS) and sales, general, and administrative expenses (SGA). ∆ logKt is the value
of the capital stock is the log difference level of net plant, property, and equipment (PPE) between
balance-sheet years t− 1 and t. In all specifications, we trim the 1% and 99% tails of the outcome
variable. Standard errors are two-way clustered by firm ID and industry-year.
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Table A8: The Effect of Optimism on Stock Prices, High-Frequency Analysis

(1) (2) (3) (4) (5) (6)
Outcome is stock return on

Filing Day Prior Four Days Next Four Days
optit 0.000145 -0.000142 0.00106 0.000963 0.00173 0.00249

(0.0007) (0.0007) (0.0011) (0.0014) (0.0012) (0.0016)
Firm FE X X X X X X
Industry-by-FY FE X X X X X X
Industry-FF3 inter. X X X
N 39,457 39,457 39,396 17,710 39,346 19,708
R2 0.189 0.246 0.190 0.345 0.206 0.317

Notes: The regression equation for columns (1), (3), and (5) is Ri,w(t) = βoptit+γi+χj(i),y(i,t) +εit
where i indexes firms, t is the 10K filing day, w(t) is a window around the day (the same day,
the prior four days, or the next four days), and y(i, t) is the fiscal year associated with the specific
10-K. In columns (2), (4), and (6), we add interactions of industry codes with the filing day’s (i) the
market minus risk-free rate, (ii) high-minus-low return, and (iii) small-minus-big return. Standard
errors are two-way clustered by firm ID and industry-year.

Table A9: Optimism and Managerial Optimism Relative to Analysts

(1) (2)
Outcome is GuidanceOptExAntei,t+1

optit 0.0351 0.00517
(0.0197) (0.0309)

Ind.-by-time FE X X
Lag labor X
Current and lag TFP X

N 3,821 2,190
R2 0.143 0.178

Notes: The regression model is a variant of Equation 32 with a different outcome variable. The
outcome, GuidanceOptExAnte, is a binary indicators for whether is an indicator of whether man-
agers’ sales guidance exceeds the analyst consensus. Standard errors are two-way clustered by firm
ID and industry-year.

126



Table A10: Optimism is Contagious and Associative, Alternative Standard Errors

(1) (2) (3)
Outcome is optit

Own lag, opti,t−1 0.209 0.214 0.135
(0.0071) (0.0080) (0.0166)
[0.0214] [0.0220] [0.0281]
{0.0218} {0.0221} {0.0273}

Aggregate lag, optt−1 0.290
(0.0578)
[0.180]
{0.179}

Real GDP growth, ∆ log Yt−1 0.804
(0.2204)
[0.635]
{0.627}

Industry lag, optj(i),t−1 0.276 0.207
(0.0396) (0.0733)
[0.0434] [0.0563]
{0.0496} {0.0656}

Industry output growth, ∆ log Yj(i),t−1 0.0560 0.0549
(0.0309) (0.0632)
[0.0328] [0.0668]
{0.0428} {0.0772}

Peer lag, optp(i),t−1 0.0356
(0.0225)
[0.0259]
{0.0329}

Firm FE X X X
Time FE X X
N 64,948 52,258 8,514
R2 0.481 0.501 0.501

Notes: This Table replicates the analysis of Table 3 with alternative standard error constructions.
Standard errors in parentheses are two-way clustered by firm ID and industry-year; those in square
brackets are two-way clustered by firm ID and year; and those in braces are two-way clustered by
industry and year. Aggregate, industry, and peer average optimism are averages of the optimism
variable over the respective sets of firms. Industry output growth is the log difference in sectoral
value-added calculated from BEA data, linked to two-digit NAICS industries.
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Table A11: Optimism is Contagious and Associative, NYSE Peer Set Model

(1) (2)
Outcome is optit

Own lag, opti,t−1 0.214 0.135
(0.0080) (0.0166)

Industry lag, optj(i),t−1 0.276 0.207
(0.0396) (0.0733)

Industry output growth, ∆ log Yj(i),t−1 0.0560 0.0549
(0.0309) (0.0632)

Peer lag, optp(i),t−1 0.0356
(0.0225)

Firm FE X X
Time FE X X
N 52,258 8,514
R2 0.501 0.501

Notes: The regression model is Equation 34. Industry and peer average optimism are leave-one-out
averages of the optimism variable over the respective sets of firms. We define peer sets for the subset
of firms traded on the New York Stock Exchange using the method of Kaustia and Rantala (2021).
These authors exploit common equity analyst coverage to define peers for each firm. Firm j is a
peer of firm i at time t if they have more than C common analysts, where C is chosen so that the
probability of having C or more common analysts by chance is less than 1% when analysts following
firm i randomly choose the firms they follow among all firms with analysts in period t. Industry
output growth is the log difference in sectoral value-added calculated from BEA data, linked to
two-digit NAICS industries. Standard errors are two-way clustered by firm ID and industry-year.
The sum of coefficients sind + speer, the marginal effect of optimism in both the industry and peer
set, is positive and statistically significant (estimate 0.243, standard error 0.075).
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Table A12: Sentiment is Contagious and Associative

(1) (2) (3)
Outcome is sentimentit

Own lag, sentimenti,t−1 0.259 0.279 0.226
(0.0091) (0.0106) (0.0166)

Aggregate lag, sentimentt−1 0.253
(0.0519)

Real GDP growth, ∆ log Yt−1 2.632
(0.5305)

Industry lag, sentimentj(i),t−1 0.175 0.108
(0.0360) (0.0763)

Industry output growth, ∆ log Yj(i),t−1 0.108 0.142
(0.0522) (0.1312)

Peer lag, sentimentp(i),t−1 0.0234
(0.0188)

Firm FE X X X
Time FE X X
N 63,881 51,555 8,338
R2 0.568 0.599 0.602

Notes: The regression model is a variant of Equation 33 for column 1, and a variant of Equation 34
for columns 2 and 3, with the continuous variable sentimentit (and averages thereof) substituted for
binary optimism. Aggregate, industry, and peer average sentiment are averages of the sentiment
variable over the respective sets of firms. Industry output growth is the log difference in sectoral
value-added calculated from BEA data, linked to two-digit NAICS industries. In all specifications,
we trim the 1% and 99% tails of sentimentit. Standard errors are two-way clustered by firm ID and
industry-year.
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Table A13: Sentiment is Contagious and Associative, Controlling for Past and Future
Outcomes

(1) (2) (3) (4) (5)
Outcome is sentimentit

Aggregate lag, sentimentt−1 0.253 0.385 0.410
(0.0519) (0.0651) (0.1103)

Ind. lag, sentimentj(i),t−1 0.175 0.151
(0.0360) (0.0409)

Time FE X X
Firm FE X X X X X
Own lag, opti,t−1 X X X X X
(∆ log Yt+k)2k=−2 X X
(∆ log Yj(i),t+k)2k=−2 X X
N 63,881 48,889 37,643 51,555 37,643
R2 0.568 0.578 0.599 0.599 0.601

Notes: The regression model is a variant of Equation 35 for column 1-3, and an analogous variant
of industry-level specification for columns 4 and 5 (i.e., Equation 34 with past and future controls),
with the continuous variable sentimentit (and averages thereof) substituted for binary optimism.
Columns 1 and 4 correspond, respectively, with columns 1 and 3 of Table A12. The added control
variables are two leads, two lags, and the contemporaneous value of: real GDP growth (columns
2-3), and industry-level output growth (columns 3 and 5). In all specifications, we trim the 1% and
99% tails of sentimentit. Standard errors are two-way clustered by firm ID and industry-year.
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Table A14: The Twenty Most Common Words for Each Shiller Chapter

Panic Frugality Gold Standard Labor-Saving Machines Automation and AI Real Estate Stock Market Boycotts Wage-Price Spiral
bank help standard replac replac price chapter price countri

consum hous book produc appear appear peopl profit labor
appear buy money technolog show real specul good union
show home run appear question find drop consum ask

forecast famili paper book suggest hous play start wage
economi lost peopl power labor estat depress fall inflat
suggest display metal save ask buy warn buy strong

run job depress problem run home peak wage world
concept peopl eastern labor worker citi great inflat mile
peopl explain almost innov vacat land today world peopl
grew phrase depositor run autom movement get cut happen

around depress young wage human world decad shop depress
weather postpon today worker univers tend reaction peopl war

figur car want electr world peopl newspap explain tri
confid justifi went mechan machin never news campaign wrote
wall cultur decad human job search storm play peak

happen fashion idea world peopl specul saw depress great
depress unemploy man machin answer explain memori behavior recess

tri great newspap job around popul interview postpon went
unemploy fault popular invent figur phrase watch war get

Notes: The twenty most common lemmatized words among the 100 words that typify each Shiller (2020) narrative. Our selection
procedure is described in Section 4.2.
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Table A15: The Ten Most Common Words for Each Selected Topic

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
lease 0.047 solid 0.791 foreign 0.097 borrower 0.034 plan 0.066 advertising 0.029 insurance 0.082 derivative 0.078
tenant 0.042 scheme 0.02 currency 0.067 agent 0.029 participant 0.031 retail 0.028 loss 0.031 value 0.05
landlord 0.03 line 0.009 income 0.045 lender 0.022 employee 0.02 brand 0.018 income 0.018 fair 0.048
lessee 0.017 asset 0.008 tax 0.038 agreement 0.02 committee 0.015 credit 0.018 investment 0.017 rate 0.039
rent 0.016 income 0.008 exchange 0.035 loan 0.02 employer 0.014 consumer 0.017 fix 0.016 interest 0.038
lessor 0.014 debt 0.007 comprehensive 0.023 credit 0.018 make 0.013 distribution 0.016 policy 0.015 asset 0.038
property 0.012 tax 0.007 translation 0.023 bank 0.013 account 0.013 card 0.015 business 0.015 hedge 0.025
term 0.011 cash 0.006 loss 0.021 administrative 0.012 provide 0.011 marketing 0.015 life 0.014 gain 0.022
day 0.009 credit 0.006 gain 0.018 interest 0.012 payment 0.01 food 0.013 premium 0.013 credit 0.019
provide 0.008 loss 0.005 financial 0.017 make 0.011 amount 0.01 store 0.013 write 0.012 financial 0.019

Topic 9 Topic 10 Topic 11 Topic 12 Topic 13 Topic 14 Topic 15 Topic 16
benefit 0.089 stock 0.036 international 0.068 fund 0.059 financial 0.041 corporation 0.119 million 0.036 trustee 0.02
plan 0.08 common 0.033 united 0.065 investment 0.046 income 0.039 board 0.032 debt 0.031 seller 0.016
asset 0.06 financial 0.033 group 0.052 asset 0.032 cash 0.024 meeting 0.02 due 0.023 respect 0.014
pension 0.04 cash 0.022 global 0.031 trading 0.03 consolidated 0.02 stock 0.02 earning 0.022 indenture 0.013
define 0.033 asset 0.019 canada 0.022 value 0.026 approximately 0.018 director 0.016 percent 0.022 holder 0.011
cost 0.031 accounting 0.014 limited 0.022 management 0.022 asset 0.015 president 0.015 segment 0.018 notice 0.011
value 0.023 business 0.013 reference 0.021 market 0.02 statement 0.012 financial 0.013 interest 0.018 provide 0.011
tax 0.022 item 0.012 incorporate 0.017 capital 0.019 share 0.012 officer 0.012 include 0.017 interest 0.011
obligation 0.018 equity 0.011 us 0.013 income 0.017 accounting 0.012 business 0.011 relate 0.015 person 0.01
income 0.018 loss 0.011 sa 0.013 fee 0.015 tax 0.012 vote 0.01 information 0.015 purchaser 0.01

Topic 17 Topic 18 Topic 19 Topic 20 Topic 21 Topic 22 Topic 23 Topic 24
agreement 0.071 type 0.058 stock 0.152 stock 0.049 gaming 0.035 double 0.405 exhibit 0.042 member 0.499
party 0.018 accounting 0.042 common 0.086 compensation 0.039 service 0.029 solid 0.214 incorporate 0.03 scheme 0.125
provide 0.014 lease 0.039 price 0.037 tax 0.039 network 0.022 income 0.022 reference 0.03 line 0.036
termination 0.011 topic 0.038 exercise 0.036 share 0.028 wireless 0.021 scheme 0.018 item 0.026 amount 0.027
write 0.01 asset 0.037 option 0.036 income 0.023 local 0.019 cash 0.016 registrant 0.023 abstract 0.026
employee 0.009 codification 0.034 purchase 0.034 average 0.019 cable 0.015 loss 0.014 exchange 0.023 asset 0.017
set 0.009 publisher 0.034 agreement 0.03 expense 0.018 provide 0.014 tax 0.014 pursuant 0.019 balance 0.015
notice 0.008 equipment 0.031 share 0.027 asset 0.016 equipment 0.013 balance 0.009 annual 0.018 datum 0.014
information 0.008 balance 0.026 value 0.019 outstanding 0.016 access 0.013 asset 0.007 bank 0.017 type 0.014
day 0.008 definition 0.022 warrant 0.017 weight 0.015 video 0.012 receivable 0.007 financial 0.017 value 0.013

Topic 25 Topic 26 Topic 27 Topic 28 Topic 29 Topic 30
medical 0.176 june 0.136 executive 0.072 reorganization 0.048 court 0.038 technology 0.018
health 0.142 march 0.123 compensation 0.03 bankruptcy 0.047 settlement 0.027 revenue 0.017
care 0.123 note 0.089 employment 0.025 plan 0.044 district 0.021 development 0.015
provide 0.028 agreement 0.057 officer 0.024 predecessor 0.036 certain 0.019 business 0.013
management 0.027 august 0.05 board 0.024 successor 0.027 litigation 0.016 customer 0.012
system 0.027 financial 0.026 committee 0.02 chapter 0.021 action 0.016 stock 0.012
federal 0.024 interest 0.024 director 0.019 asset 0.019 complaint 0.012 product 0.012
program 0.023 item 0.016 chief 0.017 court 0.018 damage 0.011 support 0.009
insurance 0.022 payable 0.015 president 0.017 cash 0.016 approximately 0.011 market 0.009
service 0.02 due 0.014 annual 0.015 certain 0.014 case 0.01 service 0.008

Notes: The ten most common words (lemmatized bigrams) in example topics estimated by LDA and selected by our LASSO procedure
as relevant for hiring (see Section 5.1). Weights correspond to relative importance for scoring the document. The LDA model and our
estimation procedure are described in Section 4.2.
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Table A16: Sensitivity Analysis for the Quantitative Analysis

Parameters Results
α γ ψ ε ω 1

1−ω ĉQ(0) ĉQ(1) 2000-02 2007-09

Baseline 1.0 0.0 0.4 2.6 0.490 1.962 0.192 0.335 0.316 0.181
High ψ 1.0 0.0 2.5 2.6 0.133 1.154 0.175 0.359 0.186 0.106
High γ 1.0 1.0 0.4 2.6 -0.784 0.560 0.041 0.184 0.090 0.052
Empirical Multiplier 1.0 0.0 1.15 2.6 0.250 1.333 0.167 0.329 0.215 0.123
Calibrated Multiplier 1.0 0.0 0.845 2.6 0.313 1.455 0.168 0.324 0.235 0.134
High ε 1.0 0.0 0.21 5.0 0.490 1.962 0.109 0.240 0.317 0.181
Decreasing RtS 0.75 0.0 0.05 2.6 0.490 1.962 0.125 0.238 0.237 0.135

Notes: This table summarizes the quantitative results under alternative calibrations of the macroe-
conomic parameters, which we report along side their implied complementarity ω and demand
multiplier 1

1−ω . We report four statistics as the “results” in the last four columns. The first two
are the fraction of output variance explained statically, ĉQ(0), and at a one-year horizon, ĉQ(1), by
optimism. The second two are the fraction of output losses in the 2000-02 downturn and 2007-09
downturn explained by fluctuations in optimism. Baseline corresponds to our main calibration.
High ψ increases the inverse Frisch elasticity to 2.5, or decreases the Frisch elasticity to 0.4. High
γ increases the curvature of consumption utility (indexing income effects in labor supply) from 0.0
to 1.0. Empirical Multiplier adjusts ψ to match an output multiplier in line with estimates from
Becko et al. (2024). Calibrated multiplier adjusts ψ to match our own calculation of the multiplier
in our setting in Appendix F.4. High ε increases the elasticity of substitution from 2.6 to 5.0, with
ψ adjusting to hold fixed the multiplier. Decreasing RtS reduces the returns-to-scale parameter α
from 1.0 to 0.75, with ψ adjusting to hold fixed the multiplier.
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Table A17: An Empirical Test for Cycles and Chaos

(1)
Outcome is optit

α: Constant -0.051
(0.244)

α1: opti,t−1 0.655
(0.062)

β1: opti,t−1 · opti,t−1 0.052
(1.021)

β2: (1− opti,t−1) · opti,t−1 0.952
(1.006)

τ : (opti,t−1)2 -0.062
(1.034)

η: Logistic parameter 1.443
(0.698)

Firm FE X
N 67,648
R2 0.480

Notes: The regression model is Equation 184. η is a function of the regression coefficients defined
in Equation 185, and interpretable in the model of cycles and chaos in Appendix B.8. Standard
errors are two-way clustered by firm ID and industry-year. The standard error for η is calculated
using the delta method.

Table A18: Data Definitions in Compustat

Quantity Expenditure
Production, xit — sale

Employment, Lit emp emp × industry wage
Materials, Mit — cogs + xsga− dp

Capital, Kit ppegt plus net investment —
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Table A19: The Effect of Optimism on Hiring, CEO Change Strategy

(1) (2) (3) (4)
Outcome is ∆ logLit

optit 0.0253 0.0404 0.0362 0.0253
(0.0131) (0.0131) (0.0132) (0.0029)

optit × ChangeCEOit 0.0220
(0.0099)

ChangeCEOit -0.0232
(0.0088)

Industry-by-time FE X X X X
Lag optimism X X X X
Lag labor X X X
Current and lag TFP X X X
Log Book to Market X
Stock Return X
Leverage X
N 1,725 982 905 36,953
R2 0.243 0.375 0.375 0.134

Notes: The regression model is Equation 203 for columns 1-3, and Equation 204 for column 4.
The outcome is the log change in firms’ employment. optit is a binary indicator for the optimism,
defined in Section 4.2. ChangeCEOit is a binary indicator for whether firm i changed CEO in fiscal
year t due to death, illness, personal issues or voluntary retirement. In all specifications, we trim
the 1% and 99% tails of the outcome variable. Standard errors are two-way clustered by firm ID
and industry-year.

Table A20: The Contagiousness of Optimism, CEO Change Strategy

(1) (2) (3) (4)
Outcome is optit

OLS IV OLS IV
Industry lag, optj(i),t−1 0.275 0.260 0.195 0.272

(0.0407) (0.2035) (0.0760) (0.5270)
Peer lag, optp(i),t−1 0.0437 0.129

(0.0236) (0.1677)
Firm FE X X X X
Time FE X X X X
Industry output growth, ∆ log Yj(i),t−1 X X X X

N 50,604 50,604 7,873 7,873
R2 0.503 0.051 0.508 0.020
First-stage F — 29.7 — 36.8

Notes: The IV strategies instrument the industry and/or peer lag with the CEO-change variation
in those averages. Standard errors are two-way clustered by firm ID and industry-year.
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Table A21: Optimism is Contagious and Associative, Granular IV Strategy

(1) (2) (3) (4) (5) (6)
Outcome is optit

OLS OLS IV OLS OLS IV
Own lag, opti,t−1 0.212 0.213 0.210 0.219 0.220 0.219

(0.0071) (0.0071) (0.0073) (0.0080) (0.0081) (0.0081)
Agg. sales-wt. lag, opt

sw
t−1 0.0847 0.308

(0.0421) (0.1044)
Real GDP growth, ∆ log Yt−1 1.058 1.104 0.768

(0.2205) (0.2110) (0.2607)
Agg. sales-wt. granular lag, opt

g,sw
t−1 0.150

(0.0506)
Ind. sales-wt. lag, opt

sw
j(i),t−1 0.0728 0.0195

(0.0209) (0.0459)
Ind. output growth, ∆ log Yj(i),t−1 0.0851 0.0903 0.0886

(0.0325) (0.0336) (0.0333)
Ind. sales-wt. granular lag, opt

g,sw
j(i),t−1 0.00913

(0.0216)
Firm FE X X X X X X
Time FE X X X
N 64,948 64,948 64,948 52,258 50,842 50,842
R2 0.481 0.481 0.049 0.500 0.503 0.051
First-stage F — — 99.1 — — 262.3

Notes: This table estimates Equations 33 and 34, respectively modeling the spread of optimism
at the aggregate and industry level, using granular identification of spillovers (contagiousness).
opt

sw
t−1 and opt

sw
j(i),t−1 are sales-weighted averages of aggregate and industry optimism, respectively.

opt
g,sw
t−1 and opt

g,sw
j(i),t−1 are (lagged) sales-weighted averages of the non-fundamentally-predictable

components of firm-level optimism in the aggregate and in the industry, respectively, as explained
in Appendix E.3. In columns 3 and 6, we use the granular variables as instruments for the raw
sales-weighted averages. Standard errors are two-way clustered by firm ID and industry-year.
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Table A22: Calibration Parameters for the Constellation Model

Name ζ u r s M Variance

Lease, Tenant, Landlord... -0.135 0.063 -0.342 0.820 -0.113 0.003
Solid, Scheme, Line... 0.055 0.434 -2.304 0.678 0.103 0.049
Foreign, Currency, Income... 0.021 0.373 -0.180 0.514 -0.114 0.005
Borrower, Agent, Lender... -0.066 0.064 0.019 0.747 -0.189 0.010
Plan, Participant, Employee... -0.023 0.020 0.450 0.871 -0.109 0.012
Advertising, Retail, Brand... 0.056 0.324 0.078 0.594 -0.082 0.005
Insurance, Loss, Income... -0.039 0.250 -0.132 0.651 -0.099 0.002
Derivative, Value, Fair... 0.042 0.410 0.099 0.407 -0.183 0.011
Benefit, Plan, Asset... 0.097 0.335 -0.500 0.568 -0.100 0.001
Stock, Common, Financial... -0.041 0.230 -0.212 0.285 -0.484 0.002
International, United, Group... 0.032 0.321 1.369 0.729 0.053 0.020
Fund, Investment, Asset... 0.054 0.219 0.365 0.837 0.057 0.001
Financial, Income, Cash... 0.085 0.084 1.018 0.921 0.011 0.121
Corporation, Board, Meeting... 0.050 0.201 0.812 0.783 -0.012 0.117
Million, Debt, Due... 0.026 0.307 0.138 0.405 -0.288 0.002
Trustee, Seller, Respect... -0.079 -0.006 -0.165 1.002 -0.003 0.015
Agreement, Party, Provide... -0.117 0.039 -0.067 0.864 -0.097 0.021
Type, Accounting, Lease... -0.049 0.371 0.592 0.600 -0.031 0.150
Stock, Common, Price... 0.043 0.198 1.020 0.945 0.146 0.031
Stock, Compensation, Tax... 0.023 0.274 -0.671 0.686 -0.041 0.071
Gaming, Service, Network... 0.042 0.375 0.137 0.444 -0.181 0.004
Double, Solid, Income... 0.032 0.450 -2.022 0.684 0.129 0.046
Exhibit, Incorporate, Reference... 0.033 0.187 0.139 0.802 -0.011 0.094
Member, Scheme, Line... 0.035 0.470 -0.655 0.537 0.006 0.011
Medical, Health, Care... 0.056 0.361 0.026 0.522 -0.116 0.001
June, March, Note... 0.040 0.242 0.312 0.663 -0.094 0.040
Executive, Compensation, Employee... 0.024 0.163 0.880 0.894 0.058 0.041
Reorganization, Bankruptcy, Plan... -0.085 0.357 -0.119 0.206 -0.436 0.000
Court, Settlement, District... -0.104 0.363 0.363 0.560 -0.079 0.010
Technology, Revenue, Development... 0.091 0.299 0.674 0.559 -0.138 0.013
Panic versus Confidence 0.017 0.223 -0.143 0.428 -0.349 0.003
The Gold Standard 0.017 0.204 0.724 0.955 0.159 0.005
Labor-Saving Machines 0.024 0.212 0.239 0.278 -0.511 0.001
Automation and AI 0.029 0.214 0.196 0.148 -0.638 0.001
Real Estate 0.022 0.206 -0.130 0.552 -0.243 0.002
Stock-Market Bubbles 0.012 0.221 0.126 0.472 -0.306 0.000
Boycotts and Evil Businesses 0.042 0.168 0.043 0.640 -0.192 0.003
Wage-Price Sprials 0.021 0.221 -0.113 0.669 -0.110 0.002

Notes: This table reports the topics used in the calibration of Section 6.4. The first set of rows are
LDA topics, identified by their three highest-scoring terms, and the second set of rows are chapters of
Shiller (2020), identified by shortened forms of their titles. The topics are selected via post-LASSO
estimation of Equation 42, and the first column reports the coefficients. The remaining columns
report estimates of stubbornness, associativeness, and contagiousness; the composite statistic M ;
and the unconditional time-series variance of each topic. In the estimation, we re-normalize each
topic to have a positive ζ.
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Table A23: Multiplier Calibrations via Under-Controlled Regressions of Hiring on Opti-
mism

(1) (2) (3)
Outcome is ∆Lit

optit 0.0355 0.0516 0.0486
(0.0030) (0.0034) (0.0033)

Complementarity ω — 0.313 0.270
Multiplier 1

1−ω — 1.455 1.370

Industry-by-time FE X
Firm FE X X X
Current and lagged adjusted TFP X
Current and lagged unadjusted TFP X
N 71,161 65,508 65,508
R2 0.259 0.207 0.216

Notes: The regression models are introduced in Appendix F.4. The first column replicates Column
1 of Table 1. The second two columns remove the industry-by-time FE and control for the contem-
poraneous and lagged value of seasonally adjusted log TFP, respectively with and without capacity
utilization adjustment, as reported by the updated data series of Fernald (2014). The sample size
is lower in columns 2 and 3 due to the band-pass filtering being impossible for the last part of
the sample. The remaining rows give the implied complementarity ω and demand multiplier 1

1−ω ,
by comparing the coefficients with that of column 1 and applying the formula in Equation 223.
Standard errors are double-clustered by industry-year and firm ID.
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